
Neural Network Generalization Bounds via Compression

May 2018

Speakers: Thomas Orton and Guillermo Valle

1 Introduction

Neural networks emperically show good generalization when trained on real life data; however, we have
been unable to theoretically explain why this is the case. In particular, traditional techniques which try to
give generalization bounds based on the number of parameters of a neural network significantly overestimate
the number of training samples required for the network to generalize. The paper we’re talking about today
does two things to help make progress in this area:

1. Introduce a new conceptial ”compression” framework for getting generalization bounds (section 2).

2. Give new generalization bounds for neural networks based on metrics of networks which are found to
be emperically favourable when trained on real life data (section 3).

2 Compression and Generalization

2.1 Setting and notation

We consider a multiclass classification setting, where labels come from {1, ..., k} and for a sample x we map
x→ f(x) ∈ Rk, where the classification loss is defined as

P(x,y)∼D

[
f(x)[y] < max

i6=y
f(x)[i]

]
If γ > 0 is some desired margin, then the expected margin loss is

Lγ(f) = P(x,y)∼D

[
f(x)[y] ≤ γ + max

i 6=y
f(x)[i]

]
We let L̂γ denote the emperical margin loss, and Lγ the true margin loss. The generalization error is the

difference between the two.

2.2 Compressibility

The high level idea of this section is the following: Suppose we have a classifier f from a complicated
hypothesis class which has very low emperical loss onm samples. We can try to approximate f by compressing
it to a function g, where g belongs to a family of functions with fewer than m effective parameters. This
allows us to get generalization bounds on g. The following definitions make this idea formal:

1

Definition 2.1 ((γ,S)-compressible using helper string s). Suppose GA,s = {gA,s|A ∈ A} is a class of
classifiers indexed by trainable parameters A and fixed strings s. A classifier f is (γ, S)-compressible with
respect to GA,s using helper string s if there exists A ∈ A such that for any x ∈ S, we have for all y

|f(x)[y]− gA,s(x)[y]| ≤ γ. (1)

Theorem 1. Suppose GA,s = {gA,s|A ∈ A} where A is a set of q parameters each of which can have at most
r discrete values and s is a helper string. Let S be a training set with m samples. If the trained classifier f
is (γ, S)-compressible via GA,s with helper string s, then there exists A ∈ A s.t. with high probability over
the training set,

L0(gA) ≤ L̂γ(f) +O

(√
q log r

m

)
. (2)

Proof. We can use the Chernoff bound to give

Pr[L0(gA)− L̂γ(gA) ≥ τ] ≤ exp(−2τ2m) (3)

Choosing τ =

(√
q log r
m

)
, and taking a union bound over all rq different A ∈ A, we have that with

probability at least 1− exp(−q log r), for all A ∈ A

L0(gA) ≤ L̂γ(gA) +

(√
q log r

m

)
(4)

Since f is (γ,S)−compressible with respect to g, we can pick an A ∈ A such that for all x ∈ S, and any
y, we have

|f(x)[y]− gA(x)[y]| ≤ γ (5)

For each training example, if f has margin at least γ, then gA also classifies this example correctly. Thus

L̂0(gA) ≤ L̂γ(f) (6)

Comment: In the setting of Theorem 2.1, if the compression works for 1 − ζ fraction of the training
sample, then with high probability

L0(gA) ≤ L̂γ(f) + ζ +O

(√
q log r

m

)
.

2.3 Examples

2.4 Example 1: Linear classifiers with margin

Consider a binary linear classifier c ∈ Rh, ‖c‖ = 1 with high margin. Namely c(x) := sgn(c · x), where ∀x, y
we have ‖x‖ = 1, y ∈ {−1, 1}, and for all (x, y) ∈ S in our training set, we have y(cTx) ≥ γ. We can now
consider how to compress such a classifier to a simpler family of classifiers:

Lemma 2. For any fixed vector u, Algorithm Vector-Project(c, γ) produces a vector ĉ such that with proba-
bility at least 1− η, we have |ĉ>u− c>u| ≤ γ.

2

Algorithm 1 Vector-Project(γ, c)

Require: vector c with ‖c‖ ≤ 1, η.
Ensure: vector ĉ s.t. for any fixed vector ‖u‖ ≤ 1, with probability at least 1− η, |c>u− ĉ>u| ≤ γ.

Let k = 16 log(1/η)/γ2

Sample k random Gaussian vectors v1, ..., vk ∼ N(0, I).
Compute zi = 〈vi, c〉
(Optional): Round zi to the closes multiple of γ/2

√
hk.

Return ĉ = 1
k

∑k
i=1 zivi

Proof. This is in fact a well-known corollary of Johnson-Lindenstrauss Lemma. Observe that

ĉ>u =
1

k

k∑
i=1

〈vi, c〉〈vi, u〉 (7)

The expectation E[〈vi, c〉〈vi, u〉] = E[c>viv
>
i u] = c>E[viv

>
i]u = c>u. Also

V ar[
1

k

k∑
i=1

〈vi, c〉〈vi, u〉] =
1

k
V ar[〈w, c〉〈w, u〉]

≤ 1

k
E
[
((cTw)(uTw))2

]
=

1

k
E

∑
i,j,k,l

cicjukulwiwjwkwl

≤ 1

k

E
∑
i,k

c2iu
2
kw

2
iw

2
k

+ 2E

∑
i,k

ciuickukw
2
iw

2
k

=O

(
1

k

)∑
i,k

c2iu
2
k +

∑
i,k

ciuickuk

 = O

(
1

k

)
Since c, u have norm less than 1, and

∑
i ciui ≤ ‖c‖‖u‖.

Standard concerntration inequalities give that

Pr[|ĉ>u− c>u| > γ/2] ≤ exp(−γ2k/16) = exp(log(η)) = η. (8)

It remains to show that by rounding zi to the closest multiples of γ/2
√
hk, our error increases by at most

γ/2.

Claim: a matrix with i.i.d. Consider the matrix V with columns v1, ..., vk. Then with high probability,
its spectral norm is at most 2

√
h.

Notice that ĉ = V z, where z is the vector of the zi’s. If the spectral norm of V is at most 2
√
h, then

changing each zi coordinate-wise by at most γ/4
√
hk can change ĉ in l2 norm by at most γ/2.

Lemma 3. For any number of sample m, there is an efficient algorithm with helper string to generate a
compressed vector ĉ, such that

L(ĉ) ≤ Õ(
√

1/γ2m). (9)

3

Proof. We will choose η = 1/m. By Lemma, we know there is a compression algorithm that works with
probability 1− η, and has at most O((log 1/η)/γ2) parameters. By Corollary, we know

L(ĉ) ≤ Õ(η +
√

1/γ2m) ≤ Õ(
√

1/γ2m).

2.5 Example 2: Existing generalization bounds

Notation: We define the outputs of the ith layer of a neural network by xi = Aiφ(xi−1), where φ is a RelU
activation function.

Theorem 4. A deep net with layers A1, A2, . . . Ad and output margin γ on a training set S, the generalization
error can be bounded by

Õ

√√√√hd2 maxx∈S ‖x‖

∏d
i=1 ‖Ai‖22

∑d
i=1

‖Ai‖2F
‖Ai‖22

γ2m

 . (10)

Note that (
∑d
i=1

‖Ai‖2F
‖Ai‖22

) is sum of stable ranks of the layers, and that (
∏d
i=1 ‖Ai‖22) is the maximum norm

of the vector it can produce if the input is a unit vector. The Lipschitz constant of the full network is at
most

∏d
i=1 ‖Ai‖2.

We prove the theorem in two steps. First, we want to compress a matrix A to a low rank matrix Â.
In particular, if Â has rank r, it can be expressed as a product of two matrices B1, B2 of inner dimension
r, and so Â has 2hr parameters. We can then round the entries of B1, B2 to compress A to a finite set of
functions. The second step is to show that if we replace the layers {Ai} by {Âi}, then the output of our
network doesn’t change significantly.

Lemma 5. For any matrix A ∈ Rm×n, let Â be the truncated version of A where singular values that are
smaller than δ‖A‖2 are removed. Then ‖Â−A‖2 ≤ δ‖A‖2 and Â has rank at most ‖A‖2F /(δ2‖A‖22).

Proof. Let r be the rank of Â. By construction, the maximum singular value of Â−A is at most δ‖A‖2. Since
the remaining singular values are at least δ‖A‖2, we have ‖A‖F ≥ ‖Â‖F ≥

√
rδ‖A‖2. These inequalities

come from that fact that if A = UDV T is the SVD of A with singular values {δi}, then

‖A‖2F = tr[AAT] = tr[UDV TV DTUT] = tr[DDTUTU] = tr[DDT] =
∑
i

δ2i (11)

i.e. the frobenius norm squared of a matrix is just the sum of the squared signular values of that matrix.

Lemma 6. Let f iA denote the output of the ith layer a d layer neural network with layers A1, ..., Ad. Let
∆i = ‖f iA+B(x)− f iA(x)‖2. Suppose for all layers i we have ‖Bi‖ ≤ 1

d‖A
i‖. Then:

∆i ≤
(

1 +
1

d

)i i∏
j=1

‖Aj‖2

 ‖x‖2 i∑
j=1

‖Bj‖2
‖Aj‖2

.

Proof. For the induction case:

∆i+1 = ‖
(
Ai+1 +Bi+1

)
φi(f

i
A+B(x))−Ai+1φi(f

i
A(x))‖2

= ‖
(
Ai+1 +Bi+1

) (
φi(f

i
A+B(x))− φi(f iA(x))

)
+Bi+1φi(f

i
A(x))‖2

≤
(
‖Ai+1‖2 + ‖Bi+1‖2

)
‖φi(f iA+B(x))− φi(f iA(x))‖2 + ‖Bi+1‖2‖φi(f iA(x))‖2

≤
(
‖Ai+1‖2 + ‖Bi+1‖2

)
‖f iA+B(x)− f iA(x)‖2 + ‖Bi+1‖2‖f iA(x)‖2

= ∆i

(
‖Ai+1‖2 + ‖Bi+1‖2

)
+ ‖Bi+1‖2‖f iA(x)‖2,

4

And so we get

∆i+1 ≤ ∆i

(
1 +

1

d

)
‖Ai+1‖2 + ‖Bi+1‖2‖x‖2

i∏
j=1

‖Aj‖2

≤
(

1 +
1

d

)i+1
i+1∏
j=1

‖Aj‖2

 ‖x‖2 i∑
j=1

‖Bj‖2
‖Aj‖2

+
‖Bi+1‖2
‖Ai+1‖2

‖x‖2
i+1∏
j=1

‖Ai‖2

≤
(

1 +
1

d

)i+1
i+1∏
j=1

‖Aj‖2

 ‖x‖2 i+1∑
j=1

‖Bj‖2
‖Aj‖2

Combining these lemmas, we can prove the theorem:

Proof. For each i, replace Ai by its compression Âi with parameter δ = γmaxx(e‖x‖d
∏d
i=1 ‖Ai‖2)−1. The

network fÂ then has error at most

∆d ≤ e

 d∏
j=1

‖Aj‖2

 ‖x‖2 d∑
j=1

‖Âj −Aj‖2
‖Aj‖2

≤ e

 d∏
j=1

‖Aj‖2

 ‖x‖2dδ = γ.

and the total number of parameters of the network is at most

d∑
i=1

‖A‖2F
(δ2‖A‖22)

2h = 2hδ−2
d∑
i=1

‖A‖2F
(δ2‖A‖22)

= 2e2d2h‖x‖2
d∏
i=1

‖Ai‖22
d∑
i=1

‖Ai‖2F
‖Ai‖22

/γ2.

Claim: We can round the weights in the rank r representation of each Âi to the nearest ‖A‖F /h2 while
keeping the approximation error sufficiently small. Note that the precise parameters for how we discretize
will ordinarily not show up in the Õ term, because there is only a logarithmic dependence of the model
complexity on the number of discrete values each parameter has.

Applying our (γ, S)-compressibility theorem from the previous section, we get that our compressed net
has error at most

L0(gA) ≤ L̂γ(f) + Õ

√√√√hd2 maxx∈S ‖x‖

∏d
i=1 ‖Ai‖22

∑d
i=1

‖Ai‖2F
‖Ai‖22

γ2m

 (12)

Since f has output margin γ, it has the same error as gA, and hence the same generalization bound
applies.

Comment: There is a technical issue with the above proof as presented in the paper, which requires
us to be careful when invoking (γ, S)-compressibility. In particular, we are supposed to only choose the set
of models we compress f to before we see the training set, but the above proof chooses this set based on
properties of f after training. In order to deal with this, we should really choose the rank r and precision
of descritization we compress our matrices to in advance, and then get a generalization bound based on this
choice assuming we can compress f to this set of models we chose in advance.

5

3 Definition of quantities measuring noise sensitivity

These are quantities measuring the sensitivity to noise of the neural network, and which are used in proving
Theorem 7.

Let S be the training set.

1. Layer cushion (µi): For any layer i, we define the layer cushion µi as the largest number such that
for any x ∈ S:

µi‖Ai‖F ‖φ(xi−1)‖ ≤ ‖Aiφ(xi−1)‖

2. Interlayer cushion (µi,j): For any two layers i ≤ j, we define interlayer cushion µi,j as the largest
number such that for any x ∈ S:

µi,j‖J i,jxi ‖F ‖x
i‖ ≤ ‖J i,jxi x

i‖

Furthermore, we define minimal interlayer cushion µi→ = mini≤j≤d µi,j = min{1/
√
hi,mini<j≤d µi,j}.

3. Activation contraction (c): The activation contaction c is defined as the smallest number such that
for any layer i and any x ∈ S,

‖xi‖ ≤ c‖φ(xi)‖

4. Interlayer smoothness (ρδ): Interlayer smoothness is defined the smallest number such that with
probability 1− δ over noise η for any two layers i < j any x ∈ S:

‖M i,j(xi + η)− J i,jxi (xi + η)‖ ≤ ‖η‖‖x
j‖

ρδ‖xi‖

4 Fully connected networks

The intuition behind this result is that if we can find a network fÃ, which does well on the training set, and
belongs to a small hypothesis class (independent of the training set), then we can bound its generalization
error. The way we ensure it does well on the training set is by ensuring its outputs are not very different
from fA which already does well on the training set (if L̂γ(fA) is small). The way we ensure it belongs to a
small hypothesis class is by constructing fÃ in a way that it is parametrized by few parameters

Theorem 7. For any fully connected network fA with ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any margin
γ, Algorithm 2 generates weights Ã for the network fÃ such that with probability 1− δ over the training set
and fÃ , the expected error L0(fÃ) is bounded by

L̂γ(fA) + Õ

√√√√c2d2 maxx∈S ||fA(x)||22

∑d
i=1

1
µ2
iµ

2
i→

γ2m

where µi, µi→, c and ρδ are layer cushion, interlayer cushion, activation contraction and interlayer

smoothness.

To prove this, the crucial step is to show that fA can be “compressed” to a fÃ with less parameters.
This means that the output of fÃ doesn’t differ much from fA for any input in the training set x ∈ S. This
will be shown in Lemma 3 (which relies on Lemma 2). This in turn means that fÃ can’t do much worse
than fA on the training set, in the sense that its margin can’t be much smaller than that for fA, which will
allow us to say L̂0(fÃ) ≤ L̂γ(fA), shown in Lemma 10. Finally, by using an ε-cover of the hypothesis class

of fÃ, we can bound the difference between L̂0(fÃ) and L0(fÃ) which depends on the number of parameters
of fÃ, proving Theorem 4.1.

We begin with the technical Lemma 8

Lemma 8. For any 0 < δ, ε ≤ 1, et G = {(U i, xi)}mi=1 be a set of matrix/vector pairs of size m where

U ∈ Rn×h1 and x ∈ Rh2 , let Â ∈ Rh1×h2 be the output of Algorithm 2 with η = δ/mn and ∆ = Â−A. With
probability at least 1− δ we have for any (U, x) ∈ G, ‖U∆x‖ ≤ ε‖A‖F ‖U‖F ‖x‖.

6

Algorithm 2 Matrix-Project (A, ε, η)

Require: Layer matrix A ∈ Rh1×h2 , error parameter ε, η.
Ensure: Returns Â s.t. ∀ fixed vectors u, v,

Pr[|u>Âv − u>Av‖ ≥ ε‖A‖F ‖u‖‖v‖] ≤ η.

Sample k = log(1/η)/ε2 random matrices M1, . . . ,Mk with entries i.i.d. ±1 (“helper string”)
for k′ = 1 to k do

Let Zk′ = 〈A,Mk′〉Mk′ .
end for
Let Â = 1

k

∑k
k′=1 Zk′

Proof. For any fixed vectors u, v, we have (from definition of Â by Algorithm 2)

u>Âv =
1

k

k∑
k′=1

u>Zk′v =
1

k

k∑
k′=1

〈A,Mk′〉〈uv>,Mk′〉.

This is a sum of independent terms (as the Mk′ are independent). Furthermore, its expected value is

E

[
1

k

k∑
k′=1

〈A,Mk′〉〈uv>,Mk′〉

]
=

1

k

k∑
k′=1

E
[
〈A,Mk′〉〈uv>,Mk′〉

]
= 〈A, uv>〉

where the last equality is because only the terms involving the same element of Mk′ contribute to the
expectation. We can then use Hoeffding’s inequality

Pr

[
|1
k

k∑
k′=1

〈A,Mk′〉〈uv>,Mk′〉 − 〈A, uv>〉| ≥ εh2‖A‖F ‖uv>‖F

]
≤ 2e−kε

2/2,

This is not exactly what they got. In particular that h2 which is max ‖Mk′‖F . I’m going to
ignore this difference in the rest of the section.. as |〈A,Mk′〉〈uv>,Mk′〉| ≤ h2‖A‖F ‖uv>‖F

Therefore for the choice of k = log(1/η)/ε2 we know

Pr
[
|u>Âv − u>Av‖ ≥ ε‖A‖F ‖u‖‖v‖

]
≤ η.

Now for any pair of matrix/vector (U, x) ∈ G, let ui be the i-th row of U . There are mn such rows, and
the inequality of interest holds with probability η = δ

mn for each. Therefore, by union bound we know with
probability at least 1− δ for all ui we have |u>i ∆v‖ ≤ ε‖A‖F ‖ui‖‖v‖. Since ‖U∆x‖2 =

∑n
i=1(u>i ∆x)2 and

‖U‖2F =
∑n
i=1 ‖ui‖2, we immediately get ‖U∆x‖ ≥ ε‖A‖F ‖U‖F ‖x‖.

Now, we show Lemma 9, which shows that the compressed network doesn’t differ much in its outputs
with fA.

Lemma 9. For any fully connected network fA with ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any error

0 < ε ≤ 1, Algorithm 2 generates weights Ã for a network with 72c2d2 log(mdh/δ)
ε2 ·

∑d
i=1

1
µ2
iµ

2
i→

total parameters

such that with probability 1− δ/2 over the generated weights Ã, for any x ∈ S:

‖fA(x)− fÃ(x)‖ ≤ ε‖fA(x)‖.

where µi, µi→, c and ρδ are layer cushion, interlayer cushion, activation contraction and interlayer smooth-
ness.

7

Proof. This is proven by induction on the layers i. For any layer i ≥ 0, let x̂ji be the output at layer j if the
weights A1, . . . , Ai in the first i layers are replaced with Ã1, . . . , Ãi. The induction hypothesis is then the
following:

Consider any layer i ≥ 0 and any 0 < ε ≤ 1. The following is true with probability 1− iδ
2d over Ã1, . . . , Ãi

for any j ≥ i:
‖x̃ji − x

j‖ ≤ (i/d)ε‖xj‖.

For the base case i = 0, since we are not perturbing the input, the inequality is trivial. Now assuming
that the induction hypothesis is true for i − 1, we consider what happens at layer i. Let Ãi be the result
of Algorithm 2 on Ai with εi = εµiµi→

4cd and η = δ
6d2h2m (not sure why this choice of η). Now let’s analyze

the difference in activations between the network with the extra perturbation and the unperturbed network.
For any j ≥ i we have, using the triangle inequality

‖x̃ji − x
j‖ = ‖(x̃ji − x̃

j
i−1) + (x̃ji−1 − x

j)‖ ≤ ‖(x̃ji − x̃
j
i−1)‖+ ‖x̃ji−1 − x

j‖. (13)

The second term can be bounded by (i−1)ε‖xj‖/d by the induction hypothesis. Therefore, in order to prove
the induction, it is enough to show that the first term is bounded by ε/d‖xj‖.

First, we define some notation. For any two layer i ≤ j, denote by M i,j the operator for composition of
these layers and J i,jx be the Jacobian of this operator at input x (a matrix whose p, q is the partial derivative
of the pth output coordinate with respect to the q’th input input). Therefore, we have xj = M i,j(xi)1.
Furthermore, since the activation functions are ReLU, we have M i,j(xi) = J i,jxi x

i.
We decompose the first term in Eq. 13 into two error terms one of which corresponds to the error

propagation through the network if activation (which ReLU units are 0) were fixed and the other one is the
error caused by change in the activations:

‖(x̃ji − x̃
j
i−1)‖ = ‖M i,j(Ãiφ(x̃i−1))−M i,j(Aiφ(x̃i−1))‖

= ‖M i,j(Ãiφ(x̃i−1))−M i,j(Aiφ(x̃i−1)) + J i,jxi (∆iφ(x̃i−1))− J i,jxi (∆iφ(x̃i−1))‖
≤ ‖J i,jxi (∆iφ(x̃i−1))‖+ ‖M i,j(Ãiφ(x̃i−1))−M i,j(Aiφ(x̃i−1))− J i,jxi (∆iφ(x̃i−1))‖

where ∆i = Ãi − Ai. To bound the first term, we can apply Lemma 8 with the set G = {(J i,jxi , x
i)|x ∈

S, j ≥ i} which has size at most dm (at most d J i,jxi for each of the m xi). We will also need to define
several quantities that measure how much error propagates through the network. The term can be bounded
as follows:

‖J i,jxi ∆iφ(x̃i−1)‖
≤ (εµiµi→/6cd)‖J i,jxi ‖F ‖A

i‖F ‖φ(x̃i−1)‖ Lemma 8

≤ (εµiµi→/6cd)‖J i,jxi ‖‖A
i‖F ‖x̃i−1‖ Lipschitzness of the activation function

≤ (εµiµi→/3cd)‖J i,jxi ‖F ‖A
i‖F ‖xi−1‖ Induction hypothesis

≤ (εµiµi→/3d)‖J i,jxi ‖F ‖A
i‖F ‖φ(xi−1)‖ Activation Contraction

≤ (εµi→/3d)‖J i,jxi ‖F ‖A
iφ(xi−1)‖ Layer Cushion

= (εµi→/3d)‖J i,jxi ‖F ‖x
i‖ xi = Aiφ(xi−1)

≤ (ε/3d)‖xj‖ Interlayer Cushion

where this holds with probability 1− δ
6dh , I think.., because of the first step. However, we

want it to hold with probability 1 − δ
2d for them to add up correctly?. The second term can be

bounded as:

‖M i,j(Ãiφ(x̃i−1))−M i,j(Aiφ(x̃i−1))− J i,jxi (∆iφ(x̃i−1))‖
= ‖(M i,j − J i,jxi)(Ãiφ(x̃i−1))− (M i,j − J i,jxi)(Aiφ(x̃i−1))‖
≤ ‖(M i,j − J i,jxi)(Ãiφ(x̃i−1))‖+ ‖(M i,j − J i,jxi)(Aiφ(x̃i−1))‖.

1Remember that xi are the preactivations feeding into layer i

8

Both terms can be bounded using interlayer smoothness condition of the network. First, notice that
Aiφ(x̃i−1) = x̃ii−1. Therefore, using by induction hypothesis ‖Aiφ(x̃i−1) − xi‖ = ‖x̃ii−1 − xi‖ ≤ (i −
1)ε‖xi‖/d ≤ ε‖xi‖ (as i− 1 < d).

Now by interlayer smoothness property, ‖(M i,j − J i,jxi)(Aiφ(x̃i−1))‖ ≤ ‖x̃ii−1−x
i‖‖xj‖

‖xi‖ρδ ≤ ε‖xi‖‖xj‖
‖xi‖ρδ ≤

(ε/3d)‖xj‖. (as ρδ ≥ 3d, by assumption) On the other hand, we also know Ãiφ(x̃i−1) = Aiφ(x̃i−1) +
∆iφ(x̃i−1), therefore ‖Ãiφ(x̃i−1)−xi‖ ≤ ‖Aiφ(x̃i−1)−xi‖+‖∆iφ(x̃i−1)‖ ≤ ((i−1)ε/d+ ε/3d)‖xi‖ ≤ ε‖xi‖,
so again we have ‖(M i,j − J i,jxi)(Ãiφ(x̃i−1))‖ ≤ (ε/3d)‖xj‖.

Putting everything together completes the induction, which for the last layer gives us the desired result
‖fA(x)− fÃ(x)‖ ≤ ε‖fA(x)‖, with probability at least 1− δ/2.

We will now demonstrate that because of the perturbed network producing similar outputs to the original
network, its margin of error can’t be much smaller. That means that if the original had a certain error with
margin γ, the perturbed one has at most that same error, albeit with a smaller margin (but how much
smaller it has to be is bounded). In particular, we focus on the zero margin loss for the perturbed network
in Lemma 10.

Lemma 10. For any fully connected network fA with ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any margin
γ > 0, fA can be compressed (with respect to a random string) to another fully connected network fÃ such

that for any x ∈ S, L̂0(fÂ) ≤ L̂γ(fA) and the number of parameters in fÃ is at most:

Õ

(
c2d2 maxx∈S ‖fA(x)‖22

γ2

d∑
i=1

1

µ2
iµ

2
i→

)
where µi, µi→, c and ρδ are layer cushion, interlayer cushion, activation contraction and interlayer smooth-
ness.

Proof. (of Lemma 10) If γ2 > 2 maxx∈S ‖fA(x)‖22, for any pair (x, y) in the training set we have |fA(x)[y]−
maxi6=y fA(x)[j]|2 ≤ 2 maxx∈S ‖fA(x)‖22 ≤ γ2 which means the output margin cannot be greater than γ and

therefore L̂γ(fA) = 1 which proves the statement.
If γ2 ≤ 2 maxx∈S ‖fA(x)‖22, by setting ε2 = γ2/2 maxx∈S ‖fA(x)‖22 in Lemma 9, we know that for any

x ∈ S, ‖fA(x)− fÃ(x)‖2 ≤ γ/
√

2.
For any (x, y), the margin of the original network |fA(x)[y] − maxi 6=y fA(x)[j]| can be reduced by at

most |fA − fÃ| ≤ γ. Therefore, if for any (x, y), the margin loss on the right hand side is zero |fA(x)[y] −
maxi6=y fA(x)[j]| > γ, and |fÃ(x)[y] − maxi 6=y fÃ(x)[j]| > 0, and so the classification loss on the left hand
size is zero. Therefore whenever fA classifies well with margin γ, fÃ classifies well with margin 0, which
implies the inequality.

Finally, we prove Theorem 7, by bounding the difference between L̂0(fÃ) and L0(fÃ) (generalization gap)

Proof. (of Theorem 7) We show the generalization by bounding the covering number of the network with
weights Ã. In order to get a covering number, we need to find out the required accuracy for each parameter
in the second network to cover the original network. We start by bounding the norm of the weights Ãi.

Because of positive homogeneity of ReLU activations, we can assume without loss of generality that the
network is balanced, i.e for any i 6= j, ‖Ai‖F = ‖Aj‖F = β (otherwise, one could rebalance the network
before approximation and cushion is invariant to this rebalancing). Therefore, for any x ∈ S we have:

‖Ai‖ ≤ ‖A
iφ(xi−1)‖

µi‖φ(xi−1)‖
=

‖xi‖
µi‖φ(xi−1)‖

≤ ‖xi‖c
µi‖xi−1‖

which we can apply layer-wise to get:

βd =

d∏
i=1

‖Ai‖ ≤ c‖x1‖
‖x‖µ1

d∏
i=2

‖Ai‖ ≤ c2‖x2‖
‖x‖µ1µ2

d∏
i=2

‖Ai‖ ≤ cd‖fA(x)‖
‖x‖

∏d
i=1 µi

9

By Lemma 9, ‖Ãi‖F ≤ β(1 + 1/d) (I can’t see why this is. can show using definition with sum that

Ãi ≤ βh2..). We know that Ãi = 1
k

∑k
k′=1〈Ai,Mk′〉Mk′ where 〈Ai,Mk′〉 are the parameters. Therefore, if Âi

correspond to the weights after approximating each parameter in Ãi with accuracy ν, we have: ‖Âi−Ãi‖F ≤√
khν ≤ √qhν where q is the total number of parameters. Now by Lemma 11, we get:

|`γ(fÃ(x), y)− `γ(fÂ(x), y)| ≤ 2e

γ
‖x‖

(
d∏
i=1

‖Ãi‖

)
d∑
i=1

‖Ãi − Âi‖
‖Ãi‖

<
e2

γ
‖x‖βd−1

d∑
i=1

‖Ãi − Âi‖F

≤
e2cd‖fA(x)‖

∑d
i=1 ‖Ãi − Âi‖F

γβ
∏d
i=1 µi

≤ qhν

β

where the last inequality is because by Lemma 10, e2d‖fA(x)‖
γ
∏d
i=1 µi

<
√
q (because ‖fA(x)‖ ≤ maxx∈S ‖fA(x)‖),

and cd was ignored because c=1 for ReLU, I think see Lipsicthzness assumption above (I think) Since the ab-
solute value of each parameter in layer i is at most βh, the logarithm of number of choices for each parameter
in order to get ε-cover is log(qh2/ε) ≤ 2 log(qh/ε) which results in the covering number 2q log(kh/ε). Bound-
ing the Rademacher complexity by Dudley entropy integral (See here and here) completes the proof.

Lemma 11. Let fA be a d-layer network with weights A = {A1, . . . , Ad}. Then for any input x, weights A
and Â, if for any layer i, ‖Ai − Âi‖ ≤ 1

d‖A
i‖, then we have:

‖fA(x)− fÂ(x)‖2 ≤ e‖x‖

(
d∏
i=1

‖Ai‖

)
d∑
i=1

‖Ai − Âi‖
‖Ai‖

10

https://cstheory.stackexchange.com/questions/40472/pac-learning-bound-with-epsilon-cover-of-hypothesis-class
http://www.cs.berkeley.edu/~bartlett/courses/281b-sp06/lecture24.ps

	Introduction
	Compression and Generalization
	Setting and notation
	Compressibility
	Examples
	Example 1: Linear classifiers with margin
	Example 2: Existing generalization bounds

	Definition of quantities measuring noise sensitivity
	Fully connected networks

