Payment =~ Consensus
Thomas Orton
Thesis Adviser: Boaz Barak

Submitted March 2019

Abstract

Decentralized payment systems such as Bitcoin have become massively popular in the last few years,
yet there is still much to be done in understanding their formal properties. The vast majority of decen-
tralized payment systems work by achieving consensus on the state of the network; a natural question to
therefore ask is whether this consensus is necessary. In this paper, we formally define a model of payment
systems, and present two main results. In Theorem 1, we show that even though there exists a single
step black box reduction from Payment Systems to Byzantine Broadcast, there does not exist any black
box reduction in the other direction which is significantly better than a trivial reduction. In Theorem 2,
we show how to construct Payment Systems which only require a very small number of messages to be
sent per transaction. In particular, global consensus about which transactions have occurred is not nec-
essary for payments in this model. We then show a relation between the construction in Theorem 2 and
the Lightning Network, relating the formal model constructions we have given to a practical algorithm
proposed by the cryptocurrency community.

I Introduction
1 Motivation

2 Organization and Contributions

IT Preliminaries

3 Fault Tolerance

3.1 Introduction.
3.2 Constructive Results
3.3 Lowerbound Results
3.4 Concatenating Protocols

4 Cryptocurrencies
4.1 Digital Money and Decentralization
4.2 Prior Work on Reducing Consensus

III Payment Systems

5 Payment Systems

Contents

6 Payment Systems in the Fault Tolerant Model

6.1 Reductions
6.2 Best Case Message Complexity . . .

IV Extending The Fault Tolerant Model

7 Locality Through Trust

7.1 Trusted Anonymous Third Parties For Indirection
7.2 Trusted Third Parties for Coordinating Payment Cancellation

V Wrapping Up
8 Conclusions

9 Appendix
9.1 The Lightning Network and Part IV

18
18
21

22
22

27
27
31

39

39
39
46

49
49

51

Part 1
Introduction

Motivation

Decentralized payment systems, commonly known as ”cryptocurrencies”, solve the following problem: pro-
vide a group of participants the ability to "send” and ”receive” virtual money to each other, such that no
small group of individuals can violate the security of the monetary system. For example, participants should
not be able to spend a virtual $100 note twice, nor should they be able to ”steal” money from other partic-
ipants. Since the launch and successful operation of Bitcoin in 2009, we have seen a significant increase in
interest, funding and research into understanding decentralized payment systems. For example, at its peak in
December 2017, the market capitalization of Bitcoin alone had grown from nothing to over 300 billion USD
in just nine years [46]. Throughout this timeperiod, it is undeniable that research in distributed consensus
algorithms pioneered by Lamport and others [2] in the 1980s has been significantly influential in shaping
how both researchers and practitioners think about and design distributed payment systems. Algorithms for
consensus aim to solve the problem of coordinating a group of participants to communicate in a way such
that after some time, all participants agree on some fact, and there is no way for a small group of individuals
to prevent this from happening. The connection to decentralized payment systems is that if everyone can use
a consensus protocol to agree on how much money each person has spent, then we can ensure that no-one
spends their $100 twice or steals money from someone else. To give a few examples of the extent of this
influence:

1. All of the top 10 cryptocurrencies! by market capitalization provide payment system functionality by
reaching consensus on the current monetary state of the network. [46] 2

2. Prominent researchers in this field introduce the distributed payment system problem as one in which
it is crucial all participants agree on which transactions have occurred. [36].

3. Current implementations of cryptocurrencies developed by the academic community are directly based
on consensus solutions for Byzantine Agreement [42] or built on top of consensus protocols [23] which
reach agreement on each transaction.

4. Prominent members of the cryptocurrency community explicitly and repeatedly frame cryptocurrencies
a solution for solving a global consensus problem about the monetary state of the network. 3

Based on the above, it seems that the following assumption is implicit in a significant part of the work and
discussion in the cryptocurrency community:

Assumption. Distributed payment systems cannot exist without achieving reqular global consensus about
which payments have occurred.

L As of March 2019

2The author makes no claim about the thousands of relatively unknown cyrotocurrencies which often do not have well
understood security guarantees.

3The development of Bitcoin [21] is claimed to have been significantly influenced by known solutions and impossibility results
for Byzantine Agreement. For example, it is claimed the author of Bitcoin (whose real identity is unknown) would introduce
Bitcoin as a solution to the Byzantine Agreement problem on chat forums. Consequentially, the thousands of cryptocurrencies
which are built on top of Bitcoin’s Blockchain architecture are all derived from solving the consensus problem as well. The
founder of Ethereum, which is considered one of the foundational cryptocurrencies within the cryptocurrency community,
maintains a website at https://vitalik.ca/ where he gives his perspectives on designing distributed payment systems. The
arguments he gives make heavy use of language and ideas drawn from distributed consensus.

Understanding the truth of falsehood of this implicit assumption is of central importance:

1. If we can show in which precise way the assumption is true, we will have a clearer understanding of
the canonical structure of a decentralized payment system: any such implementation would need to
use tools from consensus literature, and known impossibility results would apply.

2. If proven false, we will have a better understanding of exactly where the equivalence between consensus
and payment systems breaks down. Exploiting the point at which the two problems diverge may lead
to new algorithms which break lower bound results inherent in any payment system implementation
based on consensus of payments.

The purpose of this thesis is to closely scrutinize this implicit assumption. By the end of this paper, we
hope to convince the reader that the latter scenario is closer to the truth: while consensus certainly implies
a payment system, the reverse implication is more nuanced. The two main results of this paper are as
follows: In Theorem 1, we show that even though there exists a single step black box reduction from a
certain model of payment systems to Byzantine Broadcast, there does not exist any black box reduction in
the other direction which is significantly better than a trivial reduction. In Theorem 2, we show that in a
certain trust model we can construct payment systems where in the best case (when all participants behave
honestly), only O(log,(N)) participants exchange messages per transaction. In particular, under certain
conditions, transactions do not require global consensus to occur in the model we give.

Organization and Contributions

We begin in part II by giving a brief survey of the consensus literature and implementations of modern
cryptocurrencies most relevant to the question at hand. The goal of this section is to (a) give context to the
current understanding of consensus and cryptocurrencies, and (b) familiarize the reader with known results
which will be used in subsequent parts. Results whose solutions provide useful intuition will be proved. We
will also discuss how this thesis relates to prior work on trying to remove the need for frequent consensus in
Bitcoin, by contrasting the Constructions in Part IV with the Lightning Network [31].

The comparison between payment systems and consensus begins in part III. We start by formally defining
the minimal functionality any distributed payment system should satisfy in the fault tolerant model. This
will lead to the definition of the "Marker Problem”, a toy problem designed to encapsulate the key ideas of
a distributed payment system. After formally defining a model for this problem, the first set of results we
show towards resolving the central question of this thesis is that (section 6)

1. There exists a single step, black box reduction from the Marker Problem to Byzantine Broadcast.
(Proposition 6.1.1)

2. There exists no black box reduction from Byzantine Broadcast to the Marker Problem which is signif-
icantly better than a trivial reduction. (Theorem 1)

Already, this suggests that in the particular model we have chosen, achieving consensus is not inherently
required in a payment system.

We continue by giving some concrete constructions of solutions to payment systems in the proposed model. In
section 6.2 we play closer attention to the best case message complexity? of payment systems, in an attempt
to break the inherent lower bound of (V) messages per transaction in any consensus-based payment system
which achieves consensus on transactions®, where N is the number of participants:

4the number of messages sent when when all participants happen to behave honestly
5Such consensus based solutions form the backbone of all cryptocurrencies based on a blockchain construction.

1. We show a lower bound of Q(N f) on the ”total” best case message complexity of payment systems in
a weak adversarial model, where f is the number of faults (Proposition 6.2.1). We give solutions to
the Marker Problem showing this lower bound is tight.

2. We use the proof of Proposition 6.2.1 to construct a solution to the Marker Problem ”cycle coin”,
which has the curious locality property that certain payments require only O(1) messages in the best
case (Construction 2).

In part IV, we argue for reasonable trust extensions to the fault tolerant model which are natural for
distributed payment systems. By building on the ideas in Construction 2, we then show that under this
model, and under certain regularity assumptions about the distribution of transactions:

1. There exist payment systems with best case message complexity O(log,(N)) per transaction, where
d > 4 can be chosen to any function of N if one is willing to assume all participants have initial income
Q(d) (Theorem 2) 6. This Construction breaks the Q(NN) best case message complexity lower bound
inherent to any consensus based solution which achieves consensus on transactions.

2. Using similar ideas, there exist simple and realistically plausible ways for participants to coordinate to
further reduce the best case message complexity per transaction.

We comment that the most valuable component of part IV is likely the conceptual idea of how to bootstrap
multiple solutions of Construction 2 in a certain trust model to create highly local transactions with small
message complexity. The income regularity conditions are unnecessarily strong and not naturally motivated:
there is likely significant room for improvement for developing more sophisticated randomized constructions
with naturally motivated transaction distribution assumptions, and this is perhaps an interesting problem
for future work.

We conclude in part V by summarizing the key ideas of this paper, commenting on the practical consequence
of the results obtained in an idealized model, and proposing problems for future exploration. By the end,
we hope that the reader considers the equivalence between distributed payment systems and consensus to
be less trivial than initially believed.

6In a semi-egalitarian society where every process has initial income Q(N¢) for ¢ > 0, then the best case message complexity
is O(1)

Part 1T
Preliminaries

Fault Tolerance

Introduction

There has been a substantial amount of research in designing fault tolerant systems for networked processes.
The purpose of this subsection is to give a brief introduction and context to this area of research. We give a
survey of different model settings in which this problem is considered, state some known results of this area,
and give proofs of results we rely on in later chapters.

One of the first formal definitions for consensus over a distributed network was given by Lamport et al. in
the 1980s [2]. The motivation given was similar to the following story: Imagine there are a collection of N
Byzantine Generals who are currently camping outside of enemy territory, and would like to decide on a plan
to attack the enemy the following day. For simplicity, assume they can either decide to attack (denoted 1) or
retreat (denoted 0). Most importantly, they need to make sure that they all agree on the same plan, or risk
dividing the army in half and being defeated by the enemy. All this would be rather simple if the generals
could sit together at a table and vote on a decision; however, our generals are rather shy and refuse to leave
their tents. Each general ¢ will only communicate with another general via sending letters. To complicate
matters further, it is known that up to f < N of the generals are working in secret with the enemy, and will
try to ruin any plans of the Byzantines. Each Byzantine has an opinion (either 0 or 1) of what the decision
should be for the next day. We would like to come up with a strategy the generals can follow such that if
all non-traitorous, honest Byzantines think the decision should be to attack (resp. retreat), then all honest
Byzantines reach a consensus on this decision, even when the dishonest generals behave maliciously. Even if
not all honest Byzantines have the same opinion, we still want to ensure that every honest Byzantine agrees
on the same decision at the end (whichever that might be), to avoid half the army attacking and the other
half retreating.

To begin solving this problem, we need to formalize how the generals communicate and behave. We imagine
a collection of processes/nodes Py,...,Py (i.e. generals) which function within a network. At each time
step t € N, each process may send and receive messages to other processes in the network. The reliability
of the network to deliver these messages is either asynchronous, partially synchronous, or synchronous [39].
While an asynchronous network may arbitrarily delay (but eventually deliver) a sent message, a synchronous
network is guaranteed to reliably deliver every sent message by the next time period. Partially synchronous
networks [13] model a region between these two extremes, where there are some (unknown to each process)
guarantees on the delay of messages being delivered. This paper will focus on the synchronous network case.
Formally, we have the following definition:

Definition 3.1.1. A synchronous network consists of a collection of processes/nodes Py, ..., Py. If you like,
you can imagine each P, as being an algorithm running on node n. At each time step t € N, the following
occurs for process P,, n € [N]:

1. P, receives all the messages that were sent to it from another processes at time t — 1. In particular, P,
sees a list containing elements of the form (m,n’), where m is the sent message and n' is the sender.

2. Based on the contents of all received messages up until time t, P, can send messages to any other
process. Formally, P, is a deterministic function of all past received messages.

If we were to stop here, we would be considering a model for the Byzantine Generals problem in the
unauthenticated case. In this paper, we will primarily be concerned” with the authenticated case, where we

7all communication will be assumed to be authenticated unless explicitly stated.

give our generals some extra help: we imagine that each process P, can sign a message m to produce the
string SIGNp, (m) := (m)p,. Such a signature is assumed to be unforgeable and tamperproof: no other
process can produce a substring of the form (m)p, unless they copied it from a message originally signed
by P,. Such a formalism is designed to model real cryptographic signatures which have similar properties.
Without loss of generality, we assume that in the authenticated model, all processes sign their messages
before sending them.

We imagine that at time ¢ = 0, each process P, is given an initial value v,, in some finite set V O {0, 1}, which
is their opinion of how to attack the next day. We would like our processes to agree on some value at the end.
Now, how do the enemy generals behave? What do the agreement strategies we construct have to protect
against? Conceptually, it will be useful to imagine a single ”adversary” which can corrupt honest generals to
make them dishonest, and can coordinate the enemy generals against the honest Byzantine generals. Many
different kinds of adversaries have been studied, depending on the kinds of applications considered. For
example, fail-stop models include adversaries which can cause honest processes to terminate during network
execution, and failure-omission models allow adversaries to cause some messages to be omitted from delivery.
This paper will primarily be concerned with byzantine adversaries. Formally, an f-Adversary is one which,
at t = 0, can look at all the initial values {vn}ne[N]7 and knows the deterministic strategy all the processes
will follow. It can then pick up to f processes to corrupt, making them dishonest. From this point onward,
the dishonest processes can behave arbitrarily, while the honest processes behave according to some specified
strategy. While dishonest processes cannot forge the signature of any honest process in the authenticated
model, each dishonest process is allowed to forge the signature of another dishonest process.

Having formally described how both honest and dishonest generals behave, we now need to say what it
means for them to reach agreement on a decision. There are two closely related problems which model this.
Recall that each process P, is given an initial value v, at time ¢t = 0. At some point in the future, P,
decides on a value d,, the decision it will ultimately follow about the battle the next day. Our solution
should consist of a collection of protocols, i.e. rules or deterministic functions, which each honest process P,
follows protocol p,. Even though we have not mentioned any randomness, we will give a definition which
allows some probability of failure in anticipation of a future model:

Definition 3.1.2. (Byzantine Agreement):
We say that a collection of protocols {pi}ic|n) is a solution to the byzantine agreement problem in the presence
of an f—Adversary with error probability € if the following conditions hold with probability at least 1 — €:

1. Consistency: For any two honest processes P;, P;, we have d; = d;.
2. Validity: If v; = v for all honest processes, then d; = v for all honest processes.

3. Termination: Each honest processes decides in finite time.

If the set of initial values is V = {0,1}, we call this problem binary Byzantine Agreement.

Thus, deterministic solutions to Byzantine Agreement, which are protocols which function within the deter-
ministic model we have built, have error probability € = 0.

A closely related problem is Byzantine Broadcast: instead of each process P, receiving an initial value v,,
only the specially selected process P; (the ”general leader”) receives an initial value v;. If the general leader
is honest, then all honest generals should agree with the leader’s decision. If the leader is dishonest, all
generals should still agree on the same value.

Definition 3.1.3. (Byzantine Broadcast):
We say that a collection of protocols {pi}ie[N] s a solution to the byzantine broadcast problem in the presence
of an f—Adversary with error probability € if the following conditions hold with probability at least 1 — €:

1. Consistency: For any two honest processes P, Pj, we have d; = d;.
2. Validity: If Py is honest, then d; = v1 for all honest processes.

3. Termination: Each honest processes decides in finite time.

If the initial set of values V = {0,1}, we call this problem Binary Byzantine broadcast.

If we have a solution to these problems, it will be useful to quantify exactly how good the solution is. Towards
this aim, we give the following definitions:

Definition 3.1.4. Given any solution to a Byzantine problem, we define the following metrics:

1. Message Complexity: The total number of messages sent across the network by all honest processors
until consensus is reached (i.e. all processes decide). Note that we explicitly do not take message length
into account®.

2. Signature Complexity: The total number of signatures sent across the network by all honest pro-
cessors during network operation. Note that multiple signatures can occur in a single message, and
furthermore we count a signature multiple times if it is sent in multiple messages. If a process signs
and sends a signed message, i.e. (("attack”)p,)p,, this counts as multiple signatures.

3. Round Complexity: The mazimum number of time steps taken until consensus is reached.

Before diving into the details, we briefly give an overview of some known results for these problems.

After introducing and defining the Byzantine problems, [2] showed that for deterministic processes { P, }ne[n]
operating over a synchronous network in the unauthenticated case, the the Agreement and Broadcast prob-
lems are solvable if and only if 3f < N. In contrast, in the authenticated case, Byzantine Broadcast solvable
for all f < N [6], but Byzantine Agreement still only remains solvable iff 3f < N. In an asynchronous
network, an important result from [10] showed that consensus is impossible even in the weak fail stop adver-
sarial model allowing only a single process to arbitrarily terminate. It was shown in [13] that we can recover
from this impossibility result and still reach consensus in a partially synchronous network.

The first solutions to the Byzantine agreement problem required sending messages with a combined bit
length which was exponential in f, namely O(N/*2) and a round complexity of f + 1. It was later shown
in [3] that this round length is optimal, and later solutions for Byzantine agreement were given which gave
polynomial message complexity [6]. In [11], a lower bound of Q(N(f+1)) for the signature complexity in the
authenticated model was given and shown to be tight. What about the difference in difficulty of Byzantine
consensus when the set of possible initial values V is large, verses the binary case V = {0,1}? By giving a
black box reduction from the multivalued case to the binary case, [9] showed that binary and multivalued
Byzantine Agreement are essentially equivalent. We will therefore often think of the binary and multi-valued
problems as being ”the same”.

Following a categorization of the complexity of the Byzantine problems for deterministic solutions, researchers
turned to randomness in an attempt to break these lower bounds. Many of these solutions were based on the
idea of using randomness to create ”public coins” which could be used to facilitate consensus [8]. Recently, by
making use of a shared random string, a random oracle and cryptographic signatures, [40] built on these ideas

8This is because we will later solely focus on the number of messages sent in an attempt to differentiate consensus solutions
from payment system solutions. The literature often also considers the number of bits per message.

to give a solution BBA* to the agreement problem which runs in O(1) rounds in expectation, has O(N?)
message complexity in expectation, and tolerates 3f < N failures by a computationally bound adaptive
adversary. Other randomized solutions have been given which tolerate up to 2f < N faults and also run
in O(1) rounds in expectation [20]. From the lower bounds side, it has been shown that any randomized
solution to the agreement problem has a probability of failing which decreases at best exponentially in the
number of rounds in the non-adaptive fail-stop model [15], [22].

The precise model in which a randomized solution to Byzantine Agreement/Broadcast is formulated relies on
technical definitions of random oracles, digital signatures, and computationally bounded adversaries which
are not central to the ideas of this paper. Despite this, randomized consensus algorithms are used in practical
designs of modern cryptocurrencies, and the reductions we give in subsequent sections are fairly agnostic
to whether we are in the deterministic or randomized model. To strike a balance, while still being able to
give a comparison between payment systems and randomized solutions to consensus, we will simply state
results which also apply to randomized consensus, and refer the interested reader to [40] for more details
on what the model for randomized consensus looks like. We informally describe the differences between the
randomized and deterministic models here, though these details will not be relevant in this paper:

1. Protocols can now be randomized, i.e. they may flip random coins to decide what to do next.

2. Processes have access to certain cryptographic tools, such as digital signatures through a public key
interface, shared random oracles, and a public shared random string.

3. The adversary can only run in polynomial time. At the beginning of each time step, it can view the
entire network, and can choose some processes to behave dishonestly, up to a total of f over all time.
If a process is corrupted by an adversary at some time, we refer to it as dishonest (even before the
time it has been corrupted). The adversary then directly controls each process.

If a solution for a problem occurs in this model, we will call it a randomized solution. These solutions
may have error probability e > 0. Because the randomized setting only gives processes access to more
primitives and requires the adversary to be computationally bounded, a solution in the deterministic model
is automatically a solution in the randomized model.

Constructive Results

We now present some specific solutions and relations between Byzantine Broadcast and Byzantine Agreement.

Proposition 3.2.1. For any f < N — 1, there exists a deterministic solution to the Byzantine Broadcast
problem which can tolerate up to f corruptions.

Proof. (From [6])

Recall that we let SIGNp, (v) = (v) p, denote the string signed by P;. Likewise, we let ((v)p,, ...)p, denote
the string obtained by P;, signing v, and then P;, signing the resulting message, and so forth. If i; = 1 (i.e.
the first signature is from the broadcasting process P1), and P;; # P;, for j # w (all the signature identities
are distinct), we call a message of this form proper of length k, and we can refer to v as the value of the
proper message. We also arbitrarily designate f + 1 "relay” processes Pj, ..., P;,, ,, where none of these
are the broadcaster P;.

If P, is honest, it signs its initial value by computing m = (v1)p,, and sends this message to all processes.

Now consider the following protocol for an honest process P,,. Each processor keeps a list L of values it has
seen before. At the beginning of time step i 4+ 1, P, lexicographical orders all its received messages during
the previous time step. P, then iterates through each message m in order and does the following:

1. if m is not proper, or is proper but is not of length 4, discard m.
2. if value(m) € L, discard m.
3. if |L] > 2, discard m.

4. Otherwise, add value(m) to L. We say that P, extracts value(v) at round 4+ 1. Sign m to produce a
proper string m’ = (m)p, of length i + 1. If P, is a relay processor, send a copy of m’ to every other
processor. If P, is not a relay processor, and send a copy of m’ to every relay processor.

At time f 42, if |L| # 1, P, decides the value 0 ("sender fault”). Otherwise P, decides the unique value in
L.

We claim that such a construction solves the Byzantine Broadcast problem. First, suppose the broadcaster
P; is honest. Then at step 1, all honest nodes P, extract value vy. Moreover, since P; never produces a
signature of the form (v’)p, for v/ # vy, no proper message with a different value is ever sent across the
network. Consequently, after f + 2 steps, each P, has |L| = 1, and all honest processors decide v .

Next, we claim that all honest processors decide on the same value. In particular, we claim: suppose an
honest process P,, extracts value v within f+3 steps. Then any other honest process P, has either extracted
v or has extracted two distinct values. It then follows that either (a) all processes extract exactly 0 or 2
values, or (b) all processes extract the exact same value. In both cases, all honest processes agree on the
same value after f + 3 steps.

To prove the claim, suppose that P, has extracted v after f + 3 steps, but some P,; has not. let m be the
proper message of length ¢ with value v from which P, extracted v. Choose n such that i is the smallest
such integer (i.e. i + 1 was the earliest round number in which v was extracted by any honest process P,).
Then we must have ¢ < f + 1. Otherwise, m has been signed by at least one honest process at an earlier
time (and hence v was extracted at an earlier time), contradicting the choice of . Thus P, extracted v by

10

time f+ 1. If P, is a relay process, it then transmits a proper message of length i + 1 to every other honest
process with value v: hence, every honest process will either extract v at round ¢ + 1 < f + 2, or it will not
because it has already extracted two values. If P, is not a relay process, then since at least one relay process
is honest, P,, sends a proper message of length ¢ + 1 to some honest relay process P, with value v. There
are now two cases: either P,~ extracts v in round 7 + 1, and we reduce to a previous case, concluding that
all processes have either extracted v or two values by time i +2 < f + 3. If P, does not extract v in round
i 4+ 1, then it has already extracted two values by round i + 1, and we reduce to the previous case again,
where all processes will have extracted two values by round i 4+ 2 < f + 3. This completes the claim.

O

Notice that in the construction above, the total number of messages sent by all honest processes is O(N f).
Each honest process, besides P; and the relay processors, sends at most two groups of messages to relay
processors. Each relay processor sends at most 2 groups of messages to non-relay processors. This makes
the total number of messages equal to

(messages from process 1) + (messages from relay processes) + (messages from non-relay processes)

SN+2x(f+1)x N+2N x (f +1) = O(NY)

Since each message contains O(f) signatures, the total number of signatures sent is O(N f?). Likewise, the
number of time steps until a decision is made is O(f). These will be useful metrics to remember for two
reasons: firstly it gives us a sense of how efficient our solution is. Secondly, there are known lower bounds of
e.g. how many time steps are needed to achieve consensus in certain models, and we will make use of these
in the future.

While we will not use it, we also mention that there is a similar result for the Byzantine Agreement problem:

Proposition 3.2.2. For any f € N such that 3f < N, there exists a deterministic solution to the Byzan-
tine Agreement problem which can tolerate up to f corruptions. The message and signature complexity is
polynomial in N, f, and the round complezity is O(f).

We comment again that, in contrast to the Broadcast problem, there is no solution for the Byzantine
Agreement problem for any f € N when 3f > N[2]. °.

For randomized Byzantine Agreement, we mention the following result:

Proposition 3.2.3. (From [{0]) For any f € N such that 3f < N, and any vy > 1, there exists a randomized
solution to the Byzantine Agreement problem for V = {0,1} which can tolerate up to f corruptions. The
total number of messages sent and signatures made is O(yN?), the number of time steps taken is O(v) in
expectation, and the probability of error is 220

We comment that there exist solutions tolerating f faults with 2f < N and similar complexity given in
[20]. However, the construction given in 3.2.3 uses ideas which are perhaps more directly relevant to the
implementation of modern cryptocurrencies [42].

We can strengthen proposition 3.2.3 to handle the full Byzantine Agreement problem with arbitrary initial
values using the following lemma:

9For example, consider the case 3f = N, f =1

11

Lemma 3.2.1. There exists a black box reduction, using only two extra rounds and O(N?) extra messages and
signatures, from multi-valued Byzantine Agreement tolerating f < % faults to Binary Byzantine Agreement
tolerating f faults, i.e. these two problems are essentially equivalent.

Proof. (From [9])

Consider the following construction: At the first round, all honest processes send their initial value v; to
every other process. We call an honest process perplexed if during this round, at least %(N — f) of the values
it receives are different from its own (if it receives no value from a process, it assumes the default value 0 was
sent); otherwise we say the honest process is content. At the second round, every honest perplexed process
sends a message to every other process saying "I am perplexed”.

Now for each honest process P,, define two arrays Value,[i], Perplexed,[i]. Set Value,[n] = v,, and
Value,[j] =the value process P; claimed to have during round 1. Likewise, set Perplexzed,[n] = True if P,
is perplexed, and Perplexed,[j] = True iff process P; claimed to be perplexed in round 2. Lastly, define
Alert, = True if at least N — 2f of the elements of Perplexed, are True, and False otherwise.

Lastly, have each honest process P, now run the Binary Byzantine Agreement protocol with initial value
Alert,,. Eventually all honest processes decide on a common value Alert. If Alert = True, then all honest
processes decide on the default initial value 0. If Alert = False, then P,, decides as follows: P, initializes a
list L,,: for each j such that Perplexzed,[j] = False, P, adds Value,[j] to L,. P, then decides on the most
frequently occurring value in L,,.

We claim this construction gives the required behavior:

1. Termination: If the Binary Byzantine Agreement protocol terminates in t steps, then this construction
terminates in t 4+ 2 steps.

2. Validity: Suppose all honest processes have the same initial value v. Since 3f < N, each process
receives at most f+ 1 < %(N — f) distinct values at round 1, and so no honest process is perplexed.
Thus at most f < N — 2f elements of Perplexed,, are true, and Alert,, = False for every honest
process. By validity of the Binary Byzantine Agreement protocol, all honest processes agree on the
value Alert = False. Moreover, the value v occurs at least N — f > % times in L,, so P, decides
correctly.

3. Consistency: If Alert = T'rue, all honest processes decide the same value 0. It remains to consider the
case Alert = False. Let P, be a content process with initial value v,, and let v* be a most frequently
occurring value of the initial values of correct processes. Suppose v, # v*. Then P, receives at least
%(N — f) values different from its own v; in step 1, contradicting that P, is content. It follows that v*
is unique, and that the initial value of every content process equals v*. Since Alert = False, at least
f + 1 honest processes are content; otherwise, at least N — 2f honest processes would be perplexed,
and all correct processes would have Alert, = True at the end of the second round, contradicting the
validity of the Binary Byzantine Agreement protocol. Thus each correct process P, has their list L,
consisting of at least f+ 1 copies of v* from honest content processes, and at most f other values from
dishonest processes claiming to be content. It follows that v* is the unique majority value and all P,
decide on the same value.

O

Another way to simplify the number of definitions we have is to notice that a solution for Byzantine Agree-
ment implies a solution of similar complexity for Byzantine Broadcast:

12

Lemma 3.2.2. Suppose there exists a solution to the Byzantine Agreement problem which tolerates [faults.
Then there exists a solution to the Byzantine Broadcast problem which tolerates f faults, takes 1 extra round,
and sends O(N) more messages and signatures than the original solution. In particular, we construct this
solution via a black box reduction.

Proof. Have processor 1 send a signed copy of its initial value v; to all processors. At time step 1, if an
honest processor sees a single value v signed and sent from P, it takes this to be its value in the Byzantine
Agreement game. Otherwise it chooses a default initial value 0 € V. Now all honest processors run the
assumed solution for Byzantine Agreement, and eventually decide on a value. This construction uses one
extra round and an additional O(N) messages and signatures.

If P is honest, all honest processes start with the same initial value for Byzantine Agreement, and by
assumption will all decide on value vy. If P; is dishonest, regardless of the initial values chosen by honest
processors, because there are at most f faults, all honest processors will come to a consensus on the same
value by assumption of the correctness of the Byzantine Agreement solution. O

Corollary 3.2.1. For any f € N such that 3f < N, and any v > 1, there exists a randomized solution
to the Byzantine Broadcast problem which can tolerate up to f corruptions. The total number of messages

sent and signatures made is O(yN?), the number of time steps taken is O(v), and the probability of error is
2—Q(7)

Proof. This follows from Propositions 3.2.3, 3.2.1 and Lemma 3.2.2. O

13

Lowerbound Results

Having given some positive constructions, we now survey some impossibility results for these problems. The
first is the following:

Proposition 3.3.1. Any deterministic solution to the Byzantine Generals problem tolerating f faults requires
at least f + 1 time steps in the worst case. In particular, there exists a strategy the adversary can follow
which forces the number of steps taken to be f + 1.

We refer to [6] for a proof of this fact, which is based on a generalization of a similar theorem given in [3].
Note that this is a lower bound result: not every possible network computation requires f + 1 steps to reach
consensus, but there is always some set of choices the adversary can make if it really wants to force f + 1
steps to be made. For example, if the broadcaster is honest and sends the signed value (0) p, to all processes,
and each process P, happens to send ((0)p,)p, to every other process in time step 2, then all processes can
infer that agreement has been reached and terminate in 2 steps. By combining the round complexity lower
bound (Proposition 3.3.1) together with the black box reduction from Byzantine Broadcast to Byzantine
Agreement (Lemma 3.2.2), we get the immediate corollary:

Corollary 3.3.1. Any deterministic solution to the Byzantine Agreement problem tolerating f faults requires
at least f time steps in the worst cast. In particular, there exists a strategy the adversary can follow which
forces the number of steps taken to be f.

A later paper [11] gives lower bounds for the message complexity and signature complexity of deterministic
Byzantine Broadcast:

Proposition 3.3.2. (From [11]) Any deterministic solution to the Byzantine Broadcast problem tolerating
f < N —1 faults has signature complezxity N(f + 1)/4, even when all processes behave honestly.

Proposition 3.3.2 is a strong result: it says that even when all processes behave correctly, N(f + 1)/4
signatures are still exchanged by any protocol tolerating f faults. We note again that we are assuming all
sent messages are authenticated with a signature during the sending process.

Proof. Consider two executions of the network: in the first execution H, all processes are honest and the
broadcaster P; has initial value v; = 0. In the second execution G, all processes are honest and the
broadcaster P; has the initial value v; = 1. Let My 45, M qp be the sets of messages with their associated
send times, sent by process a to process b during histories H, G respectively. Let A(n) be the set of processes
which either (a) received a signature from n in histories G or H, or (b) sent their own signature to n in
histories G or H. Now if ¥n € [N], we have |A(n)| > f + 1, we are done, since one of history G or H
involves sending at least 3 > one(ny 1A(n)|/2 = N(f + 1)/4 signatures. Suppose for the sake of contradiction
that 3n € [N] such that |A(n)| < f. We now define a new history H’ which proceeds as follows: we make
all the processes in A(n) faulty. During the execution of H', we make each process P, € A(n) send the
messages My ., to P, at the appropriate times. Towards all other processes n” # n,n” ¢ A(n), we make
P, € A(n) send the messages Mg,y o to Py at the appropriate times.

We need to verify two properties of this construction. The first is that our construction is valid: the messages
we require the dishonest processes to send do not violate the integrity of the signatures honest processes
during the execution of history H’'. Note that n’ € A(n) only sends messages to P, which contain signatures
from dishonest nodes A(n), and so the adversary is able to ”forge” any signatures required for messages that
need to be sent to n. For n” # n,n"” ¢ A(n), note that n” never receives a signature from P,. Thus for
n’ € A(n), all the signatures in a message m € Mg,/ are either from signatures already received by n’,
or from signatures from processes in A(n) (which can be forged).

Lastly, note that the received messages of honest process P, look identical to those in history H, so P,
will decide 0. However, there is at least one honest process n” # n,n” ¢ A(n) whose received messages

14

look identical to those in history G, and so will decide 1, violating the consistency condition of Byzantine
Broadcast. O

Again by Lemma 3.2.2, the analogous result holds for Byzantine Agreement. We also have a similar lower
bound on the message complexity:

Proposition 3.3.3. (From [11]) Any deterministic solution to the Byzantine Generals problem tolerating f
faults has message complezity at least max((N —1)/2, (1 + %)2) in the worst case. In particular, there exists

a strategy the adversary can follow which forces the number of messages sent to be max((N —1)/2,(1+ 5)2)

We comment that the adversarial strategy for proposition 3.3.3 is rather weak: the adversary simply needs
to ignore some of its received messages, and behave honestly otherwise.

15

Concatenating Protocols

A common technique for building solutions to larger problems is to use protocols for smaller problems
(Byzantine Generals, secret sharing) as building blocks, and we will frequently use this technique. For
example, one may wish to have processes run two copies of Byzantine Broadcast in parallel or sequence, and
then use the decisions from each consensus protocol and combine them in a particular way. However, naively
combining protocols can lead to serious flaws in the concatenated protocol, and so is worth mentioning
here briefly. For example, imagine simulating two ”copies” of Byzantine Consensus in the authenticated
setting, one after the other. In the first simulation, processes exchange authenticated messages and achieve
consensus. In the second simulation, processes receive new input values and re-run the consensus protocol
again. However, if the consensus protocol is blindly re-run, there is no longer a guarantee of consensus for
the second round'®. This is because in the second simulation, dishonest processes can reuse the signatures
of honest processes from the first simulation (which they would not have been able to acquire otherwise).
However, this issue is easily overcome by including a nonce in all messages which uniquely identify which
simulation the message belongs to.

The next few statements are difficult to state formally in a way which captures their full generality without
introducing substantial notation, even though the ideas are very simple. Instead we choose to make these
claims as high level statements, where the proof will make clear exactly when it is valid to apply them.

Definition 3.4.1. We say a protocol solution {p, }nein) simulates a collection of protocols solutions
{(PV)ntne)s - PR)ntnein) with unique nonces'! noncey,...,noncey, if for all n, p, stipulates running
copies of protocols (p1)n,- - -, (Pi)n with their associated nonces. Recall that in the authenticated setting, we

assume all sent messages are signed as m' = (m)p,. Formally, p" behaves as follows:

1. Whenever (p'), receives a message m/', it checks to see that all signatures (s)p, contained in m’ are of
the form s = m - nonce; 2 for some fived i. We say such messages belong to simulation i. If so, it
passes the message m' to the simulation (p;)yn. Otherwise it ignores the message.

2. When the simulation (p;)n receives message m/, it pretends that it can’t see any of the -nonce; com-
ponents and behaves as usual. If (p;)n, wants to copy or sign the signatures of other processes and
combine them in a new message, we implicitly assume that it includes the nonce identifier for the ith
simulation.

3. Suppose protocol (p;), wants to send a message m’ on process P,,. m’ consists of collections of signed
messages where each signature (s)p, is of the form s = m - nonce; for some fived i. p;, simply sends
this message over the network.

Note that the signature and message complexity of {p/n}YLE[N] is equal to the sums of the complexities of each
stmulation. The round complexity remains the same.

Proposition 3.4.1. (Informal) Suppose p1,...,pr are protocol solutions which individually succeed against
an f-Adversary in the deterministic setting. Then the simulation of these protocols combined, p’, also succeeds
(all of p1,...,pK succeed together) against the f-Adversary. In the randomized setting, if we combine the
Byzantine Agreement protocols p1,...,px, where each p; has error € and is the algorithm in [40] used to
prove proposition 3.2.3, then p' also succeeds with error Ke.

0For example, see [18] for impossibility results in this direction; note that these results apply to stateless composition of
protocols. The same paper shows that if we include the round number of a protocol in a message, we can arbitrarily compose
solutions to Byzantine Agreement

Hwe assume these nonces have never been used before in the network execution

12here - denotes string concatenation with a unique symbol between the two concatenated strings

16

Proof. (Informal:) We give the proof for the deterministic model. Suppose that the combined simulation did
not succeed, so that without loss of generality, the particular simulation (p;), did not succeed running on
honest process P,, when the other simulations were run in conjunction. In particular, (p;), behaved (decided
incorrectly, sent an incorrect message etc) in an unintended way at some time ¢. For j € [N], let R;, S,
be the set of all messages received/sent resp. by P; during time ¢ which belong to simulation 1, and let D
be the set of dishonest processes. By fixing any initial values to the problem in question'®, for an honest
process P, (p1);’s actions only depend on R;. But now consider a new network execution E where all honest
processes only run protocol solution {(p1);};e[n] corresponding to simulation 1. Have the adversary choose
the same set D of dishonest processes, and mimic the execution of the 1st simulation in E: Inductively, we
claim that at step ¢, the sent and received messages Sg j:, R j: of any process P; in I at time t is equal
to those of R;¢, S at time ¢, modulo the identifier nonce;. The case t = 0 is immediate. At the beginning
of time ¢, all processes P; in E receive the same messages as in R;; by induction, since these are just the
sent messages of the prior round. We need to show all processes in F also send the same messages at time
t. For honest processes, this follows immediately, because they are deterministic functions of their received
messages. For a dishonest process P; € D during the execution of E, we stipulate that it sends the same
messages belonging to simulation 1 that were sent by P; at this time in the original simulation. We can
do this only if P; is not forging any signatures of honest processes by sending a message m’ € S;;. But
by construction, any signatures from honest processes appearing in m’ belong to simulation 1, and so must
appear in R;; (otherwise the adversary would not have been able to send m’ in the original simulation).
By induction these signatures appear in Rg ;, (modulo nonce;), and so the adversary can comply with this
stipulation. It follows that all honest processes in E receive the same messages as in the original simulation.
Thus P,, behaves incorrectly in E, contradicting that {(p1): }ic[n] succeeds individually.

O

!3e.g. the initial values {v;},¢[n] in Byzantine Broadcast

17

Cryptocurrencies

Digital Money and Decentralization

The idea of digital money has been previously studied by cryptographers, mainly with the concerns of privacy
and security in mind. For example, [14] gives a construction of a protocol which would allow individuals to
interact with a bank in an anonymous way: Alice will be able to spend money from her account without the
bank being able to tell where she is spending it. However, if Alice ever tries to spend the same digital coin
twice, then she ends up revealing her identity to the bank, and the bank can prove that Alice double spent a
coin (and consequently follow with legal action). Similar constructions of this kind include Alice being able
to prove, for example, whether the bank is being honest or stealing her money.

These solutions make sense when two conditions are met: (a) when there is a specially designated individual,
such as a bank, who can be relied on to behave in a certain way because of a regulatory environment, and
(b) when there is a realistic threat of legal action if such behavior is not observed. But what if the ”bank”
Alice is using is an anonymous individual on the internet? Or even if the bank is a known start-up, what
if it operates in a foreign country? Even if Alice can prove that the bank is cheating, whether Alice can
reasonably follow up with punitive action is a non-trivial concern. One of the key problems decentralized
payment systems solve is being able to co-ordinate a large number of individuals to form a payment system,
even in the absence of a strong regulatory environment. This makes such a payment system highly robust and
accessible to anyone with the minimal ability to send messages across the internet.'* Because we cannot rely
on any fixed subset of individuals to behave in a particular way in this context, the notion of fault tolerance
against any f failures (i.e. bad behavior by any f participants) is therefore certainly a necessary requirement
for any decentralized payment system to have. Decentralized payment systems therefore traditionally focus
on providing a protocol individuals can follow, so that even if any f individuals behave badly, the payment
system will still function correctly.

In contrast to distributed consensus in formal models, our theoretical understanding of cryptocurrencies is
still relatively underdeveloped and an active area of research. For example, a significant portion of current
research is focused on just understanding and formalizing Bitcoin’s [21] particular implementation of a
distributed payment system [39], which operates via blockchain consensus. Other researchers are working on
adapting known solutions to Byzantine Agreement to work over the internet as distributed payment systems
[42], while some members of the cryptocurrency community attempt to more informally generalize the ideas
behind the blockchain protocol to achieve greater transaction speeds via ”tangles” [41]. This research area
is very new and constantly evolving. We will give a brief summary of the key model differences between a
practical payment system which works on the internet, and a protocol which might operate in a fault tolerant
model of the previous section. We will then briefly outline the high level idea of how Bitcoin facilitates a
payment system. Since the vast majority of prominent cryptocurrencies operate on similar principles, this
will be a faithful representation to keep in mind when thinking about current implementations of practical
payment systems. The details of this representation are listed purely to give context, but are not needed for
the rest of this paper.

The key model differences between the internet and the ”fault tolerant” model given in the previous section
are as follows:

1. All participants do not necessarily know each other (the ”communication graph” is not fully connected);
instead, processes only know of and can message a few neighbouring processes. They therefore commu-
nicate to others by ”gossiping” to neighbouring processes. For example, if P, wants to send the message
”1 pay P, $17, P, will send this message to its neighbours, and request that the message be inductively
forwarded to their neighbours. Fault tolerance in different network communication typologies has been

14There are a number of other security advantages which are often argued: for example, there is now no longer a central bank
the government can use to change the money supply.

18

studied [2], but it is perhaps unclear how to model the connectivity of arbitrary participants on the
internet in a robust way.

2. Processes are usually allowed to be offline: for example, they can "opt out” of participating in a
protocol at arbitrary times, and then rejoin later. Defining a notion of fault tolerance in networks
where certain nodes can be ”"online” or ”offline” has been worked on in [19] and [34].

3. There are substantial financial incentives for processes to behave in non-trivial ways. Modeling the
incentives of processes is actively being studied from a game theory perspective, particularly in the
context of Bitcoin [43], [26]. For example, a number of results have showed that Bitcoin is not incentive
compatible, in the sense that even two thirds of the participants are honest, it can be more financially
profitable for processes to behave dishonestly. [38], [32], [28], [29], [30]

Despite these differences, Bitcoin is still an empirically successful algorithm at achieving distributed consensus
between collections of anonymous individuals. At a high level, Bitcoin works as follows: at each round ¢,
all honest participants will reach agreement on a block of new transactions. This block is then appended to
the list of transactions which have been agreed on previously; thus all honest participants have a consensus
about who has paid whom and by how much. Thus when someone wants to make a new transaction, all
honest participants can check the list of transactions they have already agreed on to verify that there is
sufficient balance for the transaction to go through.

Define a ledger L, which consists of all transactions currently processed by the network at time ¢t = 0.
Practically, this might consist of a single entry (pay, NULL, Alice,100) y4, indicating that Alice starts out
with 100 bitcoins at ¢ = 0. Now, we imagine a sequence of rounds ¢ = 0,1,.... During each round, any
number of unknown participants may try to send and receive payments. At ¢ = 0, Alice is the only one with
a positive balance, so only she can make a payment.

At round i, a participant Bob with non-zero balance might want to pay Alice 1 Bitcoin. He does this
by gossiping the signed message (pay, Bob, Alice,1,id)gop'® to his neighbours, hoping that everyone will
eventually receive this message. At the end of round i, a random leader is elected from the set of all online
participants. The ability to elect a random leader is one of the central ideas in being able to extend classical
solutions for Byzantine Agreement to those which work when the participants are unknown. For now, let’s
take it on faith that at the end of round i, all participants agree on a leader Charlie for round ¢. Charlie, if
he is honest, will look at all the transactions he has received through gossiping. He will then try to put them
all together in an extension block FE;, where F; contains the signed messages of all the payments in round
i. If he cannot include a particular transaction (because maybe Bob tried to pay Alice a bitcoin when he
didn’t have any balance), Charlie simply ignores this transaction. Finally, Charlie links F; with the ledger
for the payments in all previous rounds L;_;, forming a chain L, = F; — E;_1 — --- — Lg. Charlie then
signs and publishes L;, and everyone agrees that everyone’s balance at the beginning of round 7 + 1 is as
reflected by the payments listed in L;, provided the extension block F; is valid'®.

We now briefly try to motivate why such a construction works, without getting tied down by details. Firstly,
notice that regardless of how Charlie behaves, Charlie can never cause Bob to pay Alice an amount Bob did
not intend to pay: this is because Bob needs to sign any payment before it can be included in an extension
block. Thus, even if Charlie is dishonest, the most damage he can do is block all transactions by not including
anyone’s transaction in the next block. If we assume that 2f < IV, then if we elect a random Charlie at each
round, at least half of the time we will have an honest Charlie which will allow transactions to be appended
to the chain. Thus we will always make some progress in processing transactions over time.

15Here id is a uni