
Payment 6=⇒ Consensus

Thomas Orton

Thesis Adviser: Boaz Barak

Submitted March 2019

Abstract

Decentralized payment systems such as Bitcoin have become massively popular in the last few years,
yet there is still much to be done in understanding their formal properties. The vast majority of decen-
tralized payment systems work by achieving consensus on the state of the network; a natural question to
therefore ask is whether this consensus is necessary. In this paper, we formally define a model of payment
systems, and present two main results. In Theorem 1, we show that even though there exists a single
step black box reduction from Payment Systems to Byzantine Broadcast, there does not exist any black
box reduction in the other direction which is significantly better than a trivial reduction. In Theorem 2,
we show how to construct Payment Systems which only require a very small number of messages to be
sent per transaction. In particular, global consensus about which transactions have occurred is not nec-
essary for payments in this model. We then show a relation between the construction in Theorem 2 and
the Lightning Network, relating the formal model constructions we have given to a practical algorithm
proposed by the cryptocurrency community.

1

Contents

I Introduction 3

1 Motivation 3

2 Organization and Contributions 4

II Preliminaries 6

3 Fault Tolerance 6
3.1 Introduction . 6
3.2 Constructive Results . 10
3.3 Lowerbound Results . 14
3.4 Concatenating Protocols . 16

4 Cryptocurrencies 18
4.1 Digital Money and Decentralization . 18
4.2 Prior Work on Reducing Consensus . 21

III Payment Systems 22

5 Payment Systems 22

6 Payment Systems in the Fault Tolerant Model 27
6.1 Reductions . 27
6.2 Best Case Message Complexity . 31

IV Extending The Fault Tolerant Model 39

7 Locality Through Trust 39
7.1 Trusted Anonymous Third Parties For Indirection . 39
7.2 Trusted Third Parties for Coordinating Payment Cancellation 46

V Wrapping Up 49

8 Conclusions 49

9 Appendix 51
9.1 The Lightning Network and Part IV . 51

2

Part I

Introduction

Motivation

Decentralized payment systems, commonly known as ”cryptocurrencies”, solve the following problem: pro-
vide a group of participants the ability to ”send” and ”receive” virtual money to each other, such that no
small group of individuals can violate the security of the monetary system. For example, participants should
not be able to spend a virtual $100 note twice, nor should they be able to ”steal” money from other partic-
ipants. Since the launch and successful operation of Bitcoin in 2009, we have seen a significant increase in
interest, funding and research into understanding decentralized payment systems. For example, at its peak in
December 2017, the market capitalization of Bitcoin alone had grown from nothing to over 300 billion USD
in just nine years [46]. Throughout this timeperiod, it is undeniable that research in distributed consensus
algorithms pioneered by Lamport and others [2] in the 1980s has been significantly influential in shaping
how both researchers and practitioners think about and design distributed payment systems. Algorithms for
consensus aim to solve the problem of coordinating a group of participants to communicate in a way such
that after some time, all participants agree on some fact, and there is no way for a small group of individuals
to prevent this from happening. The connection to decentralized payment systems is that if everyone can use
a consensus protocol to agree on how much money each person has spent, then we can ensure that no-one
spends their $100 twice or steals money from someone else. To give a few examples of the extent of this
influence:

1. All of the top 10 cryptocurrencies1 by market capitalization provide payment system functionality by
reaching consensus on the current monetary state of the network. [46] 2

2. Prominent researchers in this field introduce the distributed payment system problem as one in which
it is crucial all participants agree on which transactions have occurred. [36].

3. Current implementations of cryptocurrencies developed by the academic community are directly based
on consensus solutions for Byzantine Agreement [42] or built on top of consensus protocols [23] which
reach agreement on each transaction.

4. Prominent members of the cryptocurrency community explicitly and repeatedly frame cryptocurrencies
a solution for solving a global consensus problem about the monetary state of the network. 3

Based on the above, it seems that the following assumption is implicit in a significant part of the work and
discussion in the cryptocurrency community:

Assumption. Distributed payment systems cannot exist without achieving regular global consensus about
which payments have occurred.

1As of March 2019
2The author makes no claim about the thousands of relatively unknown cyrotocurrencies which often do not have well

understood security guarantees.
3The development of Bitcoin [21] is claimed to have been significantly influenced by known solutions and impossibility results

for Byzantine Agreement. For example, it is claimed the author of Bitcoin (whose real identity is unknown) would introduce
Bitcoin as a solution to the Byzantine Agreement problem on chat forums. Consequentially, the thousands of cryptocurrencies
which are built on top of Bitcoin’s Blockchain architecture are all derived from solving the consensus problem as well. The
founder of Ethereum, which is considered one of the foundational cryptocurrencies within the cryptocurrency community,
maintains a website at https://vitalik.ca/ where he gives his perspectives on designing distributed payment systems. The
arguments he gives make heavy use of language and ideas drawn from distributed consensus.

3

Understanding the truth of falsehood of this implicit assumption is of central importance:

1. If we can show in which precise way the assumption is true, we will have a clearer understanding of
the canonical structure of a decentralized payment system: any such implementation would need to
use tools from consensus literature, and known impossibility results would apply.

2. If proven false, we will have a better understanding of exactly where the equivalence between consensus
and payment systems breaks down. Exploiting the point at which the two problems diverge may lead
to new algorithms which break lower bound results inherent in any payment system implementation
based on consensus of payments.

The purpose of this thesis is to closely scrutinize this implicit assumption. By the end of this paper, we
hope to convince the reader that the latter scenario is closer to the truth: while consensus certainly implies
a payment system, the reverse implication is more nuanced. The two main results of this paper are as
follows: In Theorem 1, we show that even though there exists a single step black box reduction from a
certain model of payment systems to Byzantine Broadcast, there does not exist any black box reduction in
the other direction which is significantly better than a trivial reduction. In Theorem 2, we show that in a
certain trust model we can construct payment systems where in the best case (when all participants behave
honestly), only O(logd(N)) participants exchange messages per transaction. In particular, under certain
conditions, transactions do not require global consensus to occur in the model we give.

Organization and Contributions

We begin in part II by giving a brief survey of the consensus literature and implementations of modern
cryptocurrencies most relevant to the question at hand. The goal of this section is to (a) give context to the
current understanding of consensus and cryptocurrencies, and (b) familiarize the reader with known results
which will be used in subsequent parts. Results whose solutions provide useful intuition will be proved. We
will also discuss how this thesis relates to prior work on trying to remove the need for frequent consensus in
Bitcoin, by contrasting the Constructions in Part IV with the Lightning Network [31].

The comparison between payment systems and consensus begins in part III. We start by formally defining
the minimal functionality any distributed payment system should satisfy in the fault tolerant model. This
will lead to the definition of the ”Marker Problem”, a toy problem designed to encapsulate the key ideas of
a distributed payment system. After formally defining a model for this problem, the first set of results we
show towards resolving the central question of this thesis is that (section 6)

1. There exists a single step, black box reduction from the Marker Problem to Byzantine Broadcast.
(Proposition 6.1.1)

2. There exists no black box reduction from Byzantine Broadcast to the Marker Problem which is signif-
icantly better than a trivial reduction. (Theorem 1)

Already, this suggests that in the particular model we have chosen, achieving consensus is not inherently
required in a payment system.

We continue by giving some concrete constructions of solutions to payment systems in the proposed model. In
section 6.2 we play closer attention to the best case message complexity4 of payment systems, in an attempt
to break the inherent lower bound of Ω(N) messages per transaction in any consensus-based payment system
which achieves consensus on transactions5, where N is the number of participants:

4the number of messages sent when when all participants happen to behave honestly
5Such consensus based solutions form the backbone of all cryptocurrencies based on a blockchain construction.

4

1. We show a lower bound of Ω(Nf) on the ”total” best case message complexity of payment systems in
a weak adversarial model, where f is the number of faults (Proposition 6.2.1). We give solutions to
the Marker Problem showing this lower bound is tight.

2. We use the proof of Proposition 6.2.1 to construct a solution to the Marker Problem ”cycle coin”,
which has the curious locality property that certain payments require only O(1) messages in the best
case (Construction 2).

In part IV, we argue for reasonable trust extensions to the fault tolerant model which are natural for
distributed payment systems. By building on the ideas in Construction 2, we then show that under this
model, and under certain regularity assumptions about the distribution of transactions:

1. There exist payment systems with best case message complexity O(logd(N)) per transaction, where
d ≥ 4 can be chosen to any function of N if one is willing to assume all participants have initial income
Ω(d) (Theorem 2) 6. This Construction breaks the Ω(N) best case message complexity lower bound
inherent to any consensus based solution which achieves consensus on transactions.

2. Using similar ideas, there exist simple and realistically plausible ways for participants to coordinate to
further reduce the best case message complexity per transaction.

We comment that the most valuable component of part IV is likely the conceptual idea of how to bootstrap
multiple solutions of Construction 2 in a certain trust model to create highly local transactions with small
message complexity. The income regularity conditions are unnecessarily strong and not naturally motivated:
there is likely significant room for improvement for developing more sophisticated randomized constructions
with naturally motivated transaction distribution assumptions, and this is perhaps an interesting problem
for future work.

We conclude in part V by summarizing the key ideas of this paper, commenting on the practical consequence
of the results obtained in an idealized model, and proposing problems for future exploration. By the end,
we hope that the reader considers the equivalence between distributed payment systems and consensus to
be less trivial than initially believed.

6In a semi-egalitarian society where every process has initial income Ω(Nc) for c > 0, then the best case message complexity
is O(1)

5

Part II

Preliminaries

Fault Tolerance

Introduction

There has been a substantial amount of research in designing fault tolerant systems for networked processes.
The purpose of this subsection is to give a brief introduction and context to this area of research. We give a
survey of different model settings in which this problem is considered, state some known results of this area,
and give proofs of results we rely on in later chapters.

One of the first formal definitions for consensus over a distributed network was given by Lamport et al. in
the 1980s [2]. The motivation given was similar to the following story: Imagine there are a collection of N
Byzantine Generals who are currently camping outside of enemy territory, and would like to decide on a plan
to attack the enemy the following day. For simplicity, assume they can either decide to attack (denoted 1) or
retreat (denoted 0). Most importantly, they need to make sure that they all agree on the same plan, or risk
dividing the army in half and being defeated by the enemy. All this would be rather simple if the generals
could sit together at a table and vote on a decision; however, our generals are rather shy and refuse to leave
their tents. Each general i will only communicate with another general via sending letters. To complicate
matters further, it is known that up to f < N of the generals are working in secret with the enemy, and will
try to ruin any plans of the Byzantines. Each Byzantine has an opinion (either 0 or 1) of what the decision
should be for the next day. We would like to come up with a strategy the generals can follow such that if
all non-traitorous, honest Byzantines think the decision should be to attack (resp. retreat), then all honest
Byzantines reach a consensus on this decision, even when the dishonest generals behave maliciously. Even if
not all honest Byzantines have the same opinion, we still want to ensure that every honest Byzantine agrees
on the same decision at the end (whichever that might be), to avoid half the army attacking and the other
half retreating.

To begin solving this problem, we need to formalize how the generals communicate and behave. We imagine
a collection of processes/nodes P1, . . . , PN (i.e. generals) which function within a network. At each time
step t ∈ N, each process may send and receive messages to other processes in the network. The reliability
of the network to deliver these messages is either asynchronous, partially synchronous, or synchronous [39].
While an asynchronous network may arbitrarily delay (but eventually deliver) a sent message, a synchronous
network is guaranteed to reliably deliver every sent message by the next time period. Partially synchronous
networks [13] model a region between these two extremes, where there are some (unknown to each process)
guarantees on the delay of messages being delivered. This paper will focus on the synchronous network case.
Formally, we have the following definition:

Definition 3.1.1. A synchronous network consists of a collection of processes/nodes P1, . . . , PN . If you like,
you can imagine each Pn as being an algorithm running on node n. At each time step t ∈ N, the following
occurs for process Pn, n ∈ [N]:

1. Pn receives all the messages that were sent to it from another processes at time t−1. In particular, Pn
sees a list containing elements of the form (m,n′), where m is the sent message and n′ is the sender.

2. Based on the contents of all received messages up until time t, Pn can send messages to any other
process. Formally, Pn is a deterministic function of all past received messages.

If we were to stop here, we would be considering a model for the Byzantine Generals problem in the
unauthenticated case. In this paper, we will primarily be concerned7 with the authenticated case, where we

7all communication will be assumed to be authenticated unless explicitly stated.

6

give our generals some extra help: we imagine that each process Pn can sign a message m to produce the
string SIGNPn(m) := (m)Pn . Such a signature is assumed to be unforgeable and tamperproof: no other
process can produce a substring of the form (m)Pn

unless they copied it from a message originally signed
by Pn. Such a formalism is designed to model real cryptographic signatures which have similar properties.
Without loss of generality, we assume that in the authenticated model, all processes sign their messages
before sending them.

We imagine that at time t = 0, each process Pn is given an initial value vn in some finite set V ⊃ {0, 1}, which
is their opinion of how to attack the next day. We would like our processes to agree on some value at the end.
Now, how do the enemy generals behave? What do the agreement strategies we construct have to protect
against? Conceptually, it will be useful to imagine a single ”adversary” which can corrupt honest generals to
make them dishonest, and can coordinate the enemy generals against the honest Byzantine generals. Many
different kinds of adversaries have been studied, depending on the kinds of applications considered. For
example, fail-stop models include adversaries which can cause honest processes to terminate during network
execution, and failure-omission models allow adversaries to cause some messages to be omitted from delivery.
This paper will primarily be concerned with byzantine adversaries. Formally, an f -Adversary is one which,
at t = 0, can look at all the initial values {vn}n∈[N], and knows the deterministic strategy all the processes
will follow. It can then pick up to f processes to corrupt, making them dishonest. From this point onward,
the dishonest processes can behave arbitrarily, while the honest processes behave according to some specified
strategy. While dishonest processes cannot forge the signature of any honest process in the authenticated
model, each dishonest process is allowed to forge the signature of another dishonest process.

Having formally described how both honest and dishonest generals behave, we now need to say what it
means for them to reach agreement on a decision. There are two closely related problems which model this.
Recall that each process Pn is given an initial value vn at time t = 0. At some point in the future, Pn
decides on a value dn, the decision it will ultimately follow about the battle the next day. Our solution
should consist of a collection of protocols, i.e. rules or deterministic functions, which each honest process Pn
follows protocol pn. Even though we have not mentioned any randomness, we will give a definition which
allows some probability of failure in anticipation of a future model:

Definition 3.1.2. (Byzantine Agreement):
We say that a collection of protocols {pi}i∈[N] is a solution to the byzantine agreement problem in the presence
of an f−Adversary with error probability ε if the following conditions hold with probability at least 1− ε:

1. Consistency: For any two honest processes Pi, Pj, we have di = dj.

2. Validity: If vi = v for all honest processes, then di = v for all honest processes.

3. Termination: Each honest processes decides in finite time.

If the set of initial values is V = {0, 1}, we call this problem binary Byzantine Agreement.

Thus, deterministic solutions to Byzantine Agreement, which are protocols which function within the deter-
ministic model we have built, have error probability ε = 0.

A closely related problem is Byzantine Broadcast: instead of each process Pn receiving an initial value vn,
only the specially selected process P1 (the ”general leader”) receives an initial value v1. If the general leader
is honest, then all honest generals should agree with the leader’s decision. If the leader is dishonest, all
generals should still agree on the same value.

7

Definition 3.1.3. (Byzantine Broadcast):
We say that a collection of protocols {pi}i∈[N] is a solution to the byzantine broadcast problem in the presence
of an f−Adversary with error probability ε if the following conditions hold with probability at least 1− ε:

1. Consistency: For any two honest processes Pi, Pj, we have di = dj.

2. Validity: If P1 is honest, then di = v1 for all honest processes.

3. Termination: Each honest processes decides in finite time.

If the initial set of values V = {0, 1}, we call this problem Binary Byzantine broadcast.

If we have a solution to these problems, it will be useful to quantify exactly how good the solution is. Towards
this aim, we give the following definitions:

Definition 3.1.4. Given any solution to a Byzantine problem, we define the following metrics:

1. Message Complexity: The total number of messages sent across the network by all honest processors
until consensus is reached (i.e. all processes decide). Note that we explicitly do not take message length
into account8.

2. Signature Complexity: The total number of signatures sent across the network by all honest pro-
cessors during network operation. Note that multiple signatures can occur in a single message, and
furthermore we count a signature multiple times if it is sent in multiple messages. If a process signs
and sends a signed message, i.e. ((”attack”)P1)P2 , this counts as multiple signatures.

3. Round Complexity: The maximum number of time steps taken until consensus is reached.

Before diving into the details, we briefly give an overview of some known results for these problems.

After introducing and defining the Byzantine problems, [2] showed that for deterministic processes {Pn}n∈[N]

operating over a synchronous network in the unauthenticated case, the the Agreement and Broadcast prob-
lems are solvable if and only if 3f < N . In contrast, in the authenticated case, Byzantine Broadcast solvable
for all f ≤ N [6], but Byzantine Agreement still only remains solvable iff 3f < N . In an asynchronous
network, an important result from [10] showed that consensus is impossible even in the weak fail stop adver-
sarial model allowing only a single process to arbitrarily terminate. It was shown in [13] that we can recover
from this impossibility result and still reach consensus in a partially synchronous network.

The first solutions to the Byzantine agreement problem required sending messages with a combined bit
length which was exponential in f , namely O(Nf+2), and a round complexity of f + 1. It was later shown
in [3] that this round length is optimal, and later solutions for Byzantine agreement were given which gave
polynomial message complexity [6]. In [11], a lower bound of Ω(N(f+1)) for the signature complexity in the
authenticated model was given and shown to be tight. What about the difference in difficulty of Byzantine
consensus when the set of possible initial values V is large, verses the binary case V = {0, 1}? By giving a
black box reduction from the multivalued case to the binary case, [9] showed that binary and multivalued
Byzantine Agreement are essentially equivalent. We will therefore often think of the binary and multi-valued
problems as being ”the same”.

Following a categorization of the complexity of the Byzantine problems for deterministic solutions, researchers
turned to randomness in an attempt to break these lower bounds. Many of these solutions were based on the
idea of using randomness to create ”public coins” which could be used to facilitate consensus [8]. Recently, by
making use of a shared random string, a random oracle and cryptographic signatures, [40] built on these ideas

8This is because we will later solely focus on the number of messages sent in an attempt to differentiate consensus solutions
from payment system solutions. The literature often also considers the number of bits per message.

8

to give a solution BBA* to the agreement problem which runs in O(1) rounds in expectation, has O(N2)
message complexity in expectation, and tolerates 3f < N failures by a computationally bound adaptive
adversary. Other randomized solutions have been given which tolerate up to 2f < N faults and also run
in O(1) rounds in expectation [20]. From the lower bounds side, it has been shown that any randomized
solution to the agreement problem has a probability of failing which decreases at best exponentially in the
number of rounds in the non-adaptive fail-stop model [15], [22].

The precise model in which a randomized solution to Byzantine Agreement/Broadcast is formulated relies on
technical definitions of random oracles, digital signatures, and computationally bounded adversaries which
are not central to the ideas of this paper. Despite this, randomized consensus algorithms are used in practical
designs of modern cryptocurrencies, and the reductions we give in subsequent sections are fairly agnostic
to whether we are in the deterministic or randomized model. To strike a balance, while still being able to
give a comparison between payment systems and randomized solutions to consensus, we will simply state
results which also apply to randomized consensus, and refer the interested reader to [40] for more details
on what the model for randomized consensus looks like. We informally describe the differences between the
randomized and deterministic models here, though these details will not be relevant in this paper:

1. Protocols can now be randomized, i.e. they may flip random coins to decide what to do next.

2. Processes have access to certain cryptographic tools, such as digital signatures through a public key
interface, shared random oracles, and a public shared random string.

3. The adversary can only run in polynomial time. At the beginning of each time step, it can view the
entire network, and can choose some processes to behave dishonestly, up to a total of f over all time.
If a process is corrupted by an adversary at some time, we refer to it as dishonest (even before the
time it has been corrupted). The adversary then directly controls each process.

If a solution for a problem occurs in this model, we will call it a randomized solution. These solutions
may have error probability ε > 0. Because the randomized setting only gives processes access to more
primitives and requires the adversary to be computationally bounded, a solution in the deterministic model
is automatically a solution in the randomized model.

9

Constructive Results

We now present some specific solutions and relations between Byzantine Broadcast and Byzantine Agreement.

Proposition 3.2.1. For any f < N − 1, there exists a deterministic solution to the Byzantine Broadcast
problem which can tolerate up to f corruptions.

Proof. (From [6])

Recall that we let SIGNPi
(v) = (v)Pi

denote the string signed by Pi. Likewise, we let ((v)Pi1
. . .)Pik

denote
the string obtained by Pi1 signing v, and then Pi2 signing the resulting message, and so forth. If ii = 1 (i.e.
the first signature is from the broadcasting process P1), and Pij 6= Piw for j 6= w (all the signature identities
are distinct), we call a message of this form proper of length k, and we can refer to v as the value of the
proper message. We also arbitrarily designate f + 1 ”relay” processes Pj1 , . . . , Pjf+1

, where none of these
are the broadcaster P1.

If P1 is honest, it signs its initial value by computing m = (v1)P1 , and sends this message to all processes.

Now consider the following protocol for an honest process Pn. Each processor keeps a list L of values it has
seen before. At the beginning of time step i + 1, Pn lexicographical orders all its received messages during
the previous time step. Pn then iterates through each message m in order and does the following:

1. if m is not proper, or is proper but is not of length i, discard m.

2. if value(m) ∈ L, discard m.

3. if |L| ≥ 2, discard m.

4. Otherwise, add value(m) to L. We say that Pn extracts value(v) at round i+ 1. Sign m to produce a
proper string m′ = (m)Pn

of length i+ 1. If Pn is a relay processor, send a copy of m′ to every other
processor. If Pn is not a relay processor, and send a copy of m′ to every relay processor.

At time f + 2, if |L| 6= 1, Pn decides the value 0 (”sender fault”). Otherwise Pn decides the unique value in
L.

We claim that such a construction solves the Byzantine Broadcast problem. First, suppose the broadcaster
P1 is honest. Then at step 1, all honest nodes Pn extract value v1. Moreover, since P1 never produces a
signature of the form (v′)P1

for v′ 6= v1, no proper message with a different value is ever sent across the
network. Consequently, after f + 2 steps, each Pn has |L| = 1, and all honest processors decide v1.

Next, we claim that all honest processors decide on the same value. In particular, we claim: suppose an
honest process Pn extracts value v within f+3 steps. Then any other honest process Pn′ has either extracted
v or has extracted two distinct values. It then follows that either (a) all processes extract exactly 0 or 2
values, or (b) all processes extract the exact same value. In both cases, all honest processes agree on the
same value after f + 3 steps.

To prove the claim, suppose that Pn has extracted v after f + 3 steps, but some Pn′ has not. let m be the
proper message of length i with value v from which Pn extracted v. Choose n such that i is the smallest
such integer (i.e. i+ 1 was the earliest round number in which v was extracted by any honest process Pn).
Then we must have i < f + 1. Otherwise, m has been signed by at least one honest process at an earlier
time (and hence v was extracted at an earlier time), contradicting the choice of i. Thus Pn extracted v by

10

time f + 1. If Pn is a relay process, it then transmits a proper message of length i+ 1 to every other honest
process with value v: hence, every honest process will either extract v at round i+ 1 ≤ f + 2, or it will not
because it has already extracted two values. If Pn is not a relay process, then since at least one relay process
is honest, Pn sends a proper message of length i + 1 to some honest relay process Pn′′ with value v. There
are now two cases: either Pn′′ extracts v in round i + 1, and we reduce to a previous case, concluding that
all processes have either extracted v or two values by time i+ 2 ≤ f + 3. If Pn′′ does not extract v in round
i + 1, then it has already extracted two values by round i + 1, and we reduce to the previous case again,
where all processes will have extracted two values by round i+ 2 ≤ f + 3. This completes the claim.

Notice that in the construction above, the total number of messages sent by all honest processes is O(Nf).
Each honest process, besides P1 and the relay processors, sends at most two groups of messages to relay
processors. Each relay processor sends at most 2 groups of messages to non-relay processors. This makes
the total number of messages equal to

(messages from process 1) + (messages from relay processes) + (messages from non-relay processes)

≤ N + 2× (f + 1)×N + 2N × (f + 1) = O(Nf)

Since each message contains O(f) signatures, the total number of signatures sent is O(Nf2). Likewise, the
number of time steps until a decision is made is O(f). These will be useful metrics to remember for two
reasons: firstly it gives us a sense of how efficient our solution is. Secondly, there are known lower bounds of
e.g. how many time steps are needed to achieve consensus in certain models, and we will make use of these
in the future.

While we will not use it, we also mention that there is a similar result for the Byzantine Agreement problem:

Proposition 3.2.2. For any f ∈ N such that 3f < N , there exists a deterministic solution to the Byzan-
tine Agreement problem which can tolerate up to f corruptions. The message and signature complexity is
polynomial in N, f , and the round complexity is O(f).

We comment again that, in contrast to the Broadcast problem, there is no solution for the Byzantine
Agreement problem for any f ∈ N when 3f ≥ N [2]. 9.

For randomized Byzantine Agreement, we mention the following result:

Proposition 3.2.3. (From [40]) For any f ∈ N such that 3f < N , and any γ ≥ 1, there exists a randomized
solution to the Byzantine Agreement problem for V = {0, 1} which can tolerate up to f corruptions. The
total number of messages sent and signatures made is O(γN2), the number of time steps taken is O(γ) in
expectation, and the probability of error is 2−Ω(γ).

We comment that there exist solutions tolerating f faults with 2f < N and similar complexity given in
[20]. However, the construction given in 3.2.3 uses ideas which are perhaps more directly relevant to the
implementation of modern cryptocurrencies [42].

We can strengthen proposition 3.2.3 to handle the full Byzantine Agreement problem with arbitrary initial
values using the following lemma:

9For example, consider the case 3f = N, f = 1

11

Lemma 3.2.1. There exists a black box reduction, using only two extra rounds and O(N2) extra messages and
signatures, from multi-valued Byzantine Agreement tolerating f < N

3 faults to Binary Byzantine Agreement
tolerating f faults, i.e. these two problems are essentially equivalent.

Proof. (From [9])

Consider the following construction: At the first round, all honest processes send their initial value vi to
every other process. We call an honest process perplexed if during this round, at least 1

2 (N −f) of the values
it receives are different from its own (if it receives no value from a process, it assumes the default value 0 was
sent); otherwise we say the honest process is content. At the second round, every honest perplexed process
sends a message to every other process saying ”I am perplexed”.

Now for each honest process Pn, define two arrays V aluen[i], P erplexedn[i]. Set V aluen[n] = vn, and
V aluen[j] =the value process Pj claimed to have during round 1. Likewise, set Perplexedn[n] = True if Pn
is perplexed, and Perplexedn[j] = True iff process Pj claimed to be perplexed in round 2. Lastly, define
Alertn = True if at least N − 2f of the elements of Perplexedn are True, and False otherwise.

Lastly, have each honest process Pn now run the Binary Byzantine Agreement protocol with initial value
Alertn. Eventually all honest processes decide on a common value Alert. If Alert = True, then all honest
processes decide on the default initial value 0. If Alert = False, then Pn decides as follows: Pn initializes a
list Ln: for each j such that Perplexedn[j] = False, Pn adds V aluen[j] to Ln. Pn then decides on the most
frequently occurring value in Ln.

We claim this construction gives the required behavior:

1. Termination: If the Binary Byzantine Agreement protocol terminates in t steps, then this construction
terminates in t+ 2 steps.

2. Validity: Suppose all honest processes have the same initial value v. Since 3f < N , each process
receives at most f + 1 < 1

2 (N − f) distinct values at round 1, and so no honest process is perplexed.
Thus at most f < N − 2f elements of Perplexedn are true, and Alertn = False for every honest
process. By validity of the Binary Byzantine Agreement protocol, all honest processes agree on the
value Alert = False. Moreover, the value v occurs at least N − f > N

2 times in Ln, so Pn decides
correctly.

3. Consistency: If Alert = True, all honest processes decide the same value 0. It remains to consider the
case Alert = False. Let Pn be a content process with initial value vn, and let v∗ be a most frequently
occurring value of the initial values of correct processes. Suppose vn 6= v∗. Then Pn receives at least
1
2 (N − f) values different from its own vi in step 1, contradicting that Pn is content. It follows that v∗

is unique, and that the initial value of every content process equals v∗. Since Alert = False, at least
f + 1 honest processes are content; otherwise, at least N − 2f honest processes would be perplexed,
and all correct processes would have Alertn = True at the end of the second round, contradicting the
validity of the Binary Byzantine Agreement protocol. Thus each correct process Pn has their list Ln
consisting of at least f + 1 copies of v∗ from honest content processes, and at most f other values from
dishonest processes claiming to be content. It follows that v∗ is the unique majority value and all Pn
decide on the same value.

Another way to simplify the number of definitions we have is to notice that a solution for Byzantine Agree-
ment implies a solution of similar complexity for Byzantine Broadcast:

12

Lemma 3.2.2. Suppose there exists a solution to the Byzantine Agreement problem which tolerates f faults.
Then there exists a solution to the Byzantine Broadcast problem which tolerates f faults, takes 1 extra round,
and sends O(N) more messages and signatures than the original solution. In particular, we construct this
solution via a black box reduction.

Proof. Have processor 1 send a signed copy of its initial value v1 to all processors. At time step 1, if an
honest processor sees a single value v1 signed and sent from P1, it takes this to be its value in the Byzantine
Agreement game. Otherwise it chooses a default initial value 0 ∈ V. Now all honest processors run the
assumed solution for Byzantine Agreement, and eventually decide on a value. This construction uses one
extra round and an additional O(N) messages and signatures.

If P1 is honest, all honest processes start with the same initial value for Byzantine Agreement, and by
assumption will all decide on value v1. If P1 is dishonest, regardless of the initial values chosen by honest
processors, because there are at most f faults, all honest processors will come to a consensus on the same
value by assumption of the correctness of the Byzantine Agreement solution.

Corollary 3.2.1. For any f ∈ N such that 3f < N , and any γ ≥ 1, there exists a randomized solution
to the Byzantine Broadcast problem which can tolerate up to f corruptions. The total number of messages
sent and signatures made is O(γN2), the number of time steps taken is O(γ), and the probability of error is
2−Ω(γ).

Proof. This follows from Propositions 3.2.3, 3.2.1 and Lemma 3.2.2.

13

Lowerbound Results

Having given some positive constructions, we now survey some impossibility results for these problems. The
first is the following:

Proposition 3.3.1. Any deterministic solution to the Byzantine Generals problem tolerating f faults requires
at least f + 1 time steps in the worst case. In particular, there exists a strategy the adversary can follow
which forces the number of steps taken to be f + 1.

We refer to [6] for a proof of this fact, which is based on a generalization of a similar theorem given in [3].
Note that this is a lower bound result: not every possible network computation requires f + 1 steps to reach
consensus, but there is always some set of choices the adversary can make if it really wants to force f + 1
steps to be made. For example, if the broadcaster is honest and sends the signed value (0)P1

to all processes,
and each process Pn happens to send ((0)P1)Pn to every other process in time step 2, then all processes can
infer that agreement has been reached and terminate in 2 steps. By combining the round complexity lower
bound (Proposition 3.3.1) together with the black box reduction from Byzantine Broadcast to Byzantine
Agreement (Lemma 3.2.2), we get the immediate corollary:

Corollary 3.3.1. Any deterministic solution to the Byzantine Agreement problem tolerating f faults requires
at least f time steps in the worst cast. In particular, there exists a strategy the adversary can follow which
forces the number of steps taken to be f .

A later paper [11] gives lower bounds for the message complexity and signature complexity of deterministic
Byzantine Broadcast:

Proposition 3.3.2. (From [11]) Any deterministic solution to the Byzantine Broadcast problem tolerating
f < N − 1 faults has signature complexity N(f + 1)/4, even when all processes behave honestly.

Proposition 3.3.2 is a strong result: it says that even when all processes behave correctly, N(f + 1)/4
signatures are still exchanged by any protocol tolerating f faults. We note again that we are assuming all
sent messages are authenticated with a signature during the sending process.

Proof. Consider two executions of the network: in the first execution H, all processes are honest and the
broadcaster P1 has initial value v1 = 0. In the second execution G, all processes are honest and the
broadcaster P1 has the initial value v1 = 1. Let MH,a,b,MG,a,b be the sets of messages with their associated
send times, sent by process a to process b during histories H,G respectively. Let A(n) be the set of processes
which either (a) received a signature from n in histories G or H, or (b) sent their own signature to n in
histories G or H. Now if ∀n ∈ [N], we have |A(n)| ≥ f + 1, we are done, since one of history G or H
involves sending at least 1

2

∑
n∈[N] |A(n)|/2 ≥ N(f + 1)/4 signatures. Suppose for the sake of contradiction

that ∃n ∈ [N] such that |A(n)| ≤ f . We now define a new history H ′ which proceeds as follows: we make
all the processes in A(n) faulty. During the execution of H ′, we make each process Pn′ ∈ A(n) send the
messages MH,n′,n to Pn at the appropriate times. Towards all other processes n′′ 6= n, n′′ 6∈ A(n), we make
Pn′ ∈ A(n) send the messages MG,n′,n′′ to Pn′′ at the appropriate times.

We need to verify two properties of this construction. The first is that our construction is valid: the messages
we require the dishonest processes to send do not violate the integrity of the signatures honest processes
during the execution of history H ′. Note that n′ ∈ A(n) only sends messages to Pn which contain signatures
from dishonest nodes A(n), and so the adversary is able to ”forge” any signatures required for messages that
need to be sent to n. For n′′ 6= n, n′′ 6∈ A(n), note that n′′ never receives a signature from Pn. Thus for
n′ ∈ A(n), all the signatures in a message m ∈ MG,n′,n′′ are either from signatures already received by n′,
or from signatures from processes in A(n) (which can be forged).

Lastly, note that the received messages of honest process Pn look identical to those in history H, so Pn
will decide 0. However, there is at least one honest process n′′ 6= n, n′′ 6∈ A(n) whose received messages

14

look identical to those in history G, and so will decide 1, violating the consistency condition of Byzantine
Broadcast.

Again by Lemma 3.2.2, the analogous result holds for Byzantine Agreement. We also have a similar lower
bound on the message complexity:

Proposition 3.3.3. (From [11]) Any deterministic solution to the Byzantine Generals problem tolerating f
faults has message complexity at least max((N − 1)/2, (1 + f

2)2) in the worst case. In particular, there exists

a strategy the adversary can follow which forces the number of messages sent to be max((N −1)/2, (1 + f
2)2).

We comment that the adversarial strategy for proposition 3.3.3 is rather weak: the adversary simply needs
to ignore some of its received messages, and behave honestly otherwise.

15

Concatenating Protocols

A common technique for building solutions to larger problems is to use protocols for smaller problems
(Byzantine Generals, secret sharing) as building blocks, and we will frequently use this technique. For
example, one may wish to have processes run two copies of Byzantine Broadcast in parallel or sequence, and
then use the decisions from each consensus protocol and combine them in a particular way. However, naively
combining protocols can lead to serious flaws in the concatenated protocol, and so is worth mentioning
here briefly. For example, imagine simulating two ”copies” of Byzantine Consensus in the authenticated
setting, one after the other. In the first simulation, processes exchange authenticated messages and achieve
consensus. In the second simulation, processes receive new input values and re-run the consensus protocol
again. However, if the consensus protocol is blindly re-run, there is no longer a guarantee of consensus for
the second round10. This is because in the second simulation, dishonest processes can reuse the signatures
of honest processes from the first simulation (which they would not have been able to acquire otherwise).
However, this issue is easily overcome by including a nonce in all messages which uniquely identify which
simulation the message belongs to.

The next few statements are difficult to state formally in a way which captures their full generality without
introducing substantial notation, even though the ideas are very simple. Instead we choose to make these
claims as high level statements, where the proof will make clear exactly when it is valid to apply them.

Definition 3.4.1. We say a protocol solution {p′n}n∈[N] simulates a collection of protocols solutions
{(p1)n}n∈[N], . . . , {(pK)n}n∈[N] with unique nonces11 nonce1, . . . , noncek if for all n, p′n stipulates running
copies of protocols (p1)n, . . . , (pK)n with their associated nonces. Recall that in the authenticated setting, we
assume all sent messages are signed as m′ = (m)Pj . Formally, p′ behaves as follows:

1. Whenever (p′)n receives a message m′, it checks to see that all signatures (s)Pj contained in m′ are of
the form s = m · noncei 12 for some fixed i. We say such messages belong to simulation i. If so, it
passes the message m′ to the simulation (pi)n. Otherwise it ignores the message.

2. When the simulation (pi)n receives message m′, it pretends that it can’t see any of the ·noncei com-
ponents and behaves as usual. If (pi)n wants to copy or sign the signatures of other processes and
combine them in a new message, we implicitly assume that it includes the nonce identifier for the ith
simulation.

3. Suppose protocol (pi)n wants to send a message m′ on process Pn. m′ consists of collections of signed
messages where each signature (s)Pj

is of the form s = m · noncei for some fixed i. p′n simply sends
this message over the network.

Note that the signature and message complexity of {p′n}n∈[N] is equal to the sums of the complexities of each
simulation. The round complexity remains the same.

Proposition 3.4.1. (Informal) Suppose p1, . . . , pk are protocol solutions which individually succeed against
an f -Adversary in the deterministic setting. Then the simulation of these protocols combined, p′, also succeeds
(all of p1, . . . , pK succeed together) against the f -Adversary. In the randomized setting, if we combine the
Byzantine Agreement protocols p1, . . . , pK , where each pi has error ε and is the algorithm in [40] used to
prove proposition 3.2.3, then p′ also succeeds with error Kε.

10For example, see [18] for impossibility results in this direction; note that these results apply to stateless composition of
protocols. The same paper shows that if we include the round number of a protocol in a message, we can arbitrarily compose
solutions to Byzantine Agreement

11we assume these nonces have never been used before in the network execution
12here · denotes string concatenation with a unique symbol between the two concatenated strings

16

Proof. (Informal:) We give the proof for the deterministic model. Suppose that the combined simulation did
not succeed, so that without loss of generality, the particular simulation (p1)n did not succeed running on
honest process Pn when the other simulations were run in conjunction. In particular, (p1)n behaved (decided
incorrectly, sent an incorrect message etc) in an unintended way at some time t. For j ∈ [N], let Rj,t, Sj,t
be the set of all messages received/sent resp. by Pj during time t which belong to simulation 1, and let D
be the set of dishonest processes. By fixing any initial values to the problem in question13, for an honest
process Pj , (p1)j ’s actions only depend on Rj . But now consider a new network execution E where all honest
processes only run protocol solution {(p1)j}j∈[N] corresponding to simulation 1. Have the adversary choose
the same set D of dishonest processes, and mimic the execution of the 1st simulation in E: Inductively, we
claim that at step t, the sent and received messages SE,j,t, RE,j,t of any process Pj in E at time t is equal
to those of Rj,t, Sj,t at time t, modulo the identifier noncei. The case t = 0 is immediate. At the beginning
of time t, all processes Pj in E receive the same messages as in Rj,t by induction, since these are just the
sent messages of the prior round. We need to show all processes in E also send the same messages at time
t. For honest processes, this follows immediately, because they are deterministic functions of their received
messages. For a dishonest process Pj ∈ D during the execution of E, we stipulate that it sends the same
messages belonging to simulation 1 that were sent by Pj at this time in the original simulation. We can
do this only if Pj is not forging any signatures of honest processes by sending a message m′ ∈ Sj,t. But
by construction, any signatures from honest processes appearing in m′ belong to simulation 1, and so must
appear in Rj,t (otherwise the adversary would not have been able to send m′ in the original simulation).
By induction these signatures appear in RE,j,t (modulo noncei), and so the adversary can comply with this
stipulation. It follows that all honest processes in E receive the same messages as in the original simulation.
Thus Pn behaves incorrectly in E, contradicting that {(p1)i}i∈[N] succeeds individually.

13e.g. the initial values {vi}n∈[N] in Byzantine Broadcast

17

Cryptocurrencies

Digital Money and Decentralization

The idea of digital money has been previously studied by cryptographers, mainly with the concerns of privacy
and security in mind. For example, [14] gives a construction of a protocol which would allow individuals to
interact with a bank in an anonymous way: Alice will be able to spend money from her account without the
bank being able to tell where she is spending it. However, if Alice ever tries to spend the same digital coin
twice, then she ends up revealing her identity to the bank, and the bank can prove that Alice double spent a
coin (and consequently follow with legal action). Similar constructions of this kind include Alice being able
to prove, for example, whether the bank is being honest or stealing her money.

These solutions make sense when two conditions are met: (a) when there is a specially designated individual,
such as a bank, who can be relied on to behave in a certain way because of a regulatory environment, and
(b) when there is a realistic threat of legal action if such behavior is not observed. But what if the ”bank”
Alice is using is an anonymous individual on the internet? Or even if the bank is a known start-up, what
if it operates in a foreign country? Even if Alice can prove that the bank is cheating, whether Alice can
reasonably follow up with punitive action is a non-trivial concern. One of the key problems decentralized
payment systems solve is being able to co-ordinate a large number of individuals to form a payment system,
even in the absence of a strong regulatory environment. This makes such a payment system highly robust and
accessible to anyone with the minimal ability to send messages across the internet.14 Because we cannot rely
on any fixed subset of individuals to behave in a particular way in this context, the notion of fault tolerance
against any f failures (i.e. bad behavior by any f participants) is therefore certainly a necessary requirement
for any decentralized payment system to have. Decentralized payment systems therefore traditionally focus
on providing a protocol individuals can follow, so that even if any f individuals behave badly, the payment
system will still function correctly.

In contrast to distributed consensus in formal models, our theoretical understanding of cryptocurrencies is
still relatively underdeveloped and an active area of research. For example, a significant portion of current
research is focused on just understanding and formalizing Bitcoin’s [21] particular implementation of a
distributed payment system [39], which operates via blockchain consensus. Other researchers are working on
adapting known solutions to Byzantine Agreement to work over the internet as distributed payment systems
[42], while some members of the cryptocurrency community attempt to more informally generalize the ideas
behind the blockchain protocol to achieve greater transaction speeds via ”tangles” [41]. This research area
is very new and constantly evolving. We will give a brief summary of the key model differences between a
practical payment system which works on the internet, and a protocol which might operate in a fault tolerant
model of the previous section. We will then briefly outline the high level idea of how Bitcoin facilitates a
payment system. Since the vast majority of prominent cryptocurrencies operate on similar principles, this
will be a faithful representation to keep in mind when thinking about current implementations of practical
payment systems. The details of this representation are listed purely to give context, but are not needed for
the rest of this paper.

The key model differences between the internet and the ”fault tolerant” model given in the previous section
are as follows:

1. All participants do not necessarily know each other (the ”communication graph” is not fully connected);
instead, processes only know of and can message a few neighbouring processes. They therefore commu-
nicate to others by ”gossiping” to neighbouring processes. For example, if Pa wants to send the message
”I pay Pb $1”, Pa will send this message to its neighbours, and request that the message be inductively
forwarded to their neighbours. Fault tolerance in different network communication typologies has been

14There are a number of other security advantages which are often argued: for example, there is now no longer a central bank
the government can use to change the money supply.

18

studied [2], but it is perhaps unclear how to model the connectivity of arbitrary participants on the
internet in a robust way.

2. Processes are usually allowed to be offline: for example, they can ”opt out” of participating in a
protocol at arbitrary times, and then rejoin later. Defining a notion of fault tolerance in networks
where certain nodes can be ”online” or ”offline” has been worked on in [19] and [34].

3. There are substantial financial incentives for processes to behave in non-trivial ways. Modeling the
incentives of processes is actively being studied from a game theory perspective, particularly in the
context of Bitcoin [43], [26]. For example, a number of results have showed that Bitcoin is not incentive
compatible, in the sense that even two thirds of the participants are honest, it can be more financially
profitable for processes to behave dishonestly. [38], [32], [28], [29], [30]

Despite these differences, Bitcoin is still an empirically successful algorithm at achieving distributed consensus
between collections of anonymous individuals. At a high level, Bitcoin works as follows: at each round i,
all honest participants will reach agreement on a block of new transactions. This block is then appended to
the list of transactions which have been agreed on previously; thus all honest participants have a consensus
about who has paid whom and by how much. Thus when someone wants to make a new transaction, all
honest participants can check the list of transactions they have already agreed on to verify that there is
sufficient balance for the transaction to go through.

Define a ledger L0, which consists of all transactions currently processed by the network at time t = 0.
Practically, this might consist of a single entry (pay,NULL,Alice, 100)Null, indicating that Alice starts out
with 100 bitcoins at t = 0. Now, we imagine a sequence of rounds i = 0, 1, During each round, any
number of unknown participants may try to send and receive payments. At i = 0, Alice is the only one with
a positive balance, so only she can make a payment.

At round i, a participant Bob with non-zero balance might want to pay Alice 1 Bitcoin. He does this
by gossiping the signed message (pay,Bob,Alice, 1, id)Bob

15 to his neighbours, hoping that everyone will
eventually receive this message. At the end of round i, a random leader is elected from the set of all online
participants. The ability to elect a random leader is one of the central ideas in being able to extend classical
solutions for Byzantine Agreement to those which work when the participants are unknown. For now, let’s
take it on faith that at the end of round i, all participants agree on a leader Charlie for round i. Charlie, if
he is honest, will look at all the transactions he has received through gossiping. He will then try to put them
all together in an extension block Ei, where Ei contains the signed messages of all the payments in round
i. If he cannot include a particular transaction (because maybe Bob tried to pay Alice a bitcoin when he
didn’t have any balance), Charlie simply ignores this transaction. Finally, Charlie links Ei with the ledger
for the payments in all previous rounds Li−1, forming a chain Li = Ei → Ei−1 → · · · → L0. Charlie then
signs and publishes Li, and everyone agrees that everyone’s balance at the beginning of round i + 1 is as
reflected by the payments listed in Li, provided the extension block Ei is valid16.

We now briefly try to motivate why such a construction works, without getting tied down by details. Firstly,
notice that regardless of how Charlie behaves, Charlie can never cause Bob to pay Alice an amount Bob did
not intend to pay: this is because Bob needs to sign any payment before it can be included in an extension
block. Thus, even if Charlie is dishonest, the most damage he can do is block all transactions by not including
anyone’s transaction in the next block. If we assume that 2f < N , then if we elect a random Charlie at each
round, at least half of the time we will have an honest Charlie which will allow transactions to be appended
to the chain. Thus we will always make some progress in processing transactions over time.

15Here id is a unique identifier
16all the signatures are correct, no-one has negative balance etc

19

The non-trivial part of Blockchain is electing a random leader: these details make the description just given
slightly less clean. Bitcoin does this by allowing any process which would like to be the leader try to solve a
random puzzle. As a concrete example17, imagine all processes have access to a random function H; if you
can find a value v such that the last k digits of H(v||Ei → Li−1) are all 0, then you can publish v, together
with an extension Ei, to all processes to prove you are a leader for extending Li−1 at round i. 18 The
assumption is that the only way to find such a v is to try different random values, eventually finding such
a v after 2k steps in expectation . The time at which the next leader finds such a v is random. Moreover,
there may be two distinct processes Pa, Pb, each with two distinct proposed extensions Ea, Eb, which both
find valid values va, vb for round i. In this case, both extensions are accepted, and the network is currently
uncertain whether La = Ea → Li−1 or Lb = Eb → Li−1 reflects the true balance. However, at round i + 1
a new leader Pc is elected. Pc needs to choose which chain and extension they would like to propose; the
value v which Pc finds is, with high probability, only valid for one of La, Lb, and so Pc only extends one of
these. We stipulate that honest leaders should only try to extend the longest chain, and moreover that the
longest chain is the one which specifies the ”true” balance of all participants. Under certain assumptions,
one can show that after a few extensions, it is always clear whether a certain extension will continue to stay
in the longest chain or will be forever rejected [24]. If we can be sure Ei is always in the longest chain, then
we can consider all the transactions in Ei has having been confirmed.

In the particular example we have given, we are uniformally electing a leader proportional to how many
times they choose to evaluate the function H in an attempt to find a valid value v, and we assume that no
subset of participants utilizing a total of one half of the computational power of the network is all dishonest.
This is like the condition 2f < N , where N now represents the total computational power of the network.
Presumably an adversary cannot maliciously coordinate so much computational power19, and when they
cannot, Bitcoin is in some sense secure. But suppose that f > 1

2N . Then the adversary can launch the
notorious 51% attack: imagine Alice pays Bob $1 in block E1. After a few more blocks, where everyone
behaves honestly, Bob sees the chain E5 → · · · → E1 → E0. Since E1 is so far down in the chain, ordinarily,
if more than say two thirds of the computational power is honest, E1 would stay in the longest chain forever
with high probability. Bob sees that Alice’s transaction is therefore confirmed, so he sends the physical
goods Alice purchased. However, after receiving the goods from Bob, Alice uses her 51% computational
power to produce a new block E′1 with no transactions, and creates the chain E′1 → E0. Nothing has gone
wrong yet; E5 → · · · → E1 → E0 is still the longest chain, so everyone agrees that E1 (and hence Alice’s
payment to Bob) is confirmed, so Bob’s balance is still $1. But now Alice chooses to only extend the chain
E′1 → E0. Because Alice has the majority of the computational power, after some amount of time she will
be able to produce a long chain Ek → · · · → E′1 → E0 which is, with high probability, longer than any other
chain that would have been produced by everyone else even if everyone else was only extending the chain
E5 → · · · → E1 → E0. Since the new longest chain no longer contains Alice’s payment to Bob, Bob loses his
$1. Thus Bitcoin is not secure if f > N

2 .

17there are less computationally intensive ways to achieve random leader election
18processes who opt into this role, miners, are given incentives to do so by receiving a monetary reward in Bitcoin if they

become the leader
19This has been shown to be a questionable assumption in practice, because large companies specialize in monopolizing

computational power for mining bitcoin due to economies of scale. There are other choices for what N can represent, for
example the total money in the system. Then the condition 2f < N says that an adversary cannot coordinate more than 1

2
of

the total wealth of the payment system to behave in an adversarial way.

20

Prior Work on Reducing Consensus

A major drawback Bitcoin suffers from is the time it takes to create a new block extension20, and the large
space required to store all transactions on a chain. As a result, Bitcoin can only handle on the order of
ten transactions per second, compared to the tens of thousands per second achieved by modern credit card
services.

It is within this context that members of the cryptocurrency community have been trying to reduce the
amount of information which needs to be agreed on through consensus in order for a transaction to occur:
given the use of a consensus mechanism for transactions, how can we make it more efficient? Note that there’s
a nuanced difference between this question, and the one which starts by asking whether global consensus on
transactions is needed at all.

It is challenging to give a complete and accurate account of the efforts which have been pursued in this area.
For example, there are over 2000 cryptocurrencies which are registered on CoinMarketCap alone21. Many
of these are slight variations of the blockchain protocol, tailored for a particular use case. Moreover, even
when a purportedly novel solution to consensus is presented, it is usually done so in the following manner.
A short whitepaper will be produced, sketching the software engineering details of how the protocol works.
Sometimes there might be some discussion about various attacks against the protocol, and how they will
not succeed. In rare cases, authors might heuristically argue that some statistical method will guarantee
security by doing some calculations. But in almost all instances of practical releases of cryptocurrencies by
the ”non-academic” community, there are no proofs of security or correctness. Indeed, even the security of
Bitcoin is a relatively open problem. It therefore makes it very difficult to assess which claims should be
taken seriously: a software developer might publish a claim that they have a protocol with minimal use of
consensus, but whether their protocol is provably secure in an adversarial model is another matter.

Perhaps the most serious attempt to reduce the amount of consensus needed for transactions to occur is
the lightning network [31]. This is a solution designed to reduce the number of transactions which need
to be globally published on the blockchain ledger. It is still a controversial solution within the blockchain
community22, but it is currently being experimented with in a semi-live setting23. By pursuing the question
of consensus, we will be led to constructing a payment system in part IV which will turn out to have
similar characteristics to the lightning network. We therefore include in the appendix a description of how
the lightning network works, and how the constructions in Part IV relate to this prior work. This can be
examined after reading Part IV, and we will draw the reader’s attention to the appendix when this point
comes.

20This is a trade-off between security and efficiency: longer block times mean more stability, but slower transactions.
21As of March 2019.
22For example, Roger Ver and other prominent cryptocurrency figures are vocal skeptics [37]
23However, its launch has also repeatedly been delayed ever since its initial proposal in 2016.

21

Part III

Payment Systems

Payment Systems

Inspired by the task of trying to compare the consensus problem to the problem of sending payments over a
distributed system, we now give a model and definition for a payment system. In particular, we would like
our model to capture the minimal functionality any reasonable payment system should possess. Similar to
the motivation of Byzantine Generals, we imagine N participants who would like to decide on a set of rules
such that, by only passing signed messages between them, they can create a system which allows people to
send payments between each other. Such a system needs to be robust to the many f individuals who would
like to break the system due to financial incentives.

Real currency has worked in the past as follows: individuals have unforgeable, or difficult to replicate, discrete
physical objects (paper notes, shells, precious metals etc) which act as a marker that an individual has some
value. These markers themselves need not have inherent value; what is important is the inductive belief that
if Alice has such a marker, a second party Bob will accept the marker as payment. The only reason Bob
accepts the marker as payment is because he too believes that he may find a third party Charlie who will
accept the marker as payment from Bob, and so on. More formally, our definition of payment system should
encapsulate the following notions

1. Participants can hold some notion of ”marker”.

2. If a participant holds a marker, this means that in the future, they can transfer the marker to someone
else, and consequently lose the marker.

3. If a second party receives a marker, they know who they received it from.

Decentralized payment systems are concerned with providing these marking functionalities in the context
where some (unspecified) participants may actively try to cheat. Physical currencies have the advantage that
they cannot easily be replicated. In contrast, digital decentralized currencies are less obvious to implement
because if one has a digital coin, it can easily be ”copied”. Concretely, if Alice has some protocol she can
follow which involves interacting with some network participants P and constitutes paying a coin to Bob,
nothing stops her from repeating the same protocol with a disjoint set of participants P ′ and paying the
same coin to Charlie afterwards. Since P, P ′ are distinct, they have no way of knowing that Alice spent her
coin twice. Note however in our analogy, that if Alice gives Bob a shell as payment, there is no a priori need
for Charlie to also agree that Alice gave Bob a shell (which would be the case if consensus about transactions
is reached), unless perhaps Bob later chooses to pay Charlie.

We now formalize these notions in the same fault tolerant model as Byzantine Consensus. Formally, we
consider a set of processes P1, . . . , PN which interact via point to point messages in the synchronous, authen-
ticated setting of Definition 3.1.1. We break the time steps t = 0, . . . into K rounds, each round consisting
of T steps. Thus after i rounds, iT steps have passed. We imagine each process Pn as starting with an
initial balance of vn,0 ∈ N markers at the beginning of round 0, and we will notate vn,i to be the number of
markers Pn has at the beginning of round i. In general, we will only be able to talk about vn,i for honest
processes Pn ∈ H. At the beginning of round i, each honest process Pn receives an input In,i ∈ [N]. If Pn is
honest and vn,i = 0, then we stipulate In,i = n. Semantically, this means ”Pn would like to send a coin to
In,i in round i”. For the remaining T steps of round i, honest processors Pn follow some protocol pn. We
will let H denote the set of all honest processes, and we assume that the adversary knows all future inputs
of all processes. At the end of round i, each honest process decides on

22

1. A value vn,i+1 ∈ N, vn,i+1 ≥ 0, its balance at the end of round i.

2. A list of senders Sn,i ⊂ [N]∪ {⊥} which Pn believes sent it coins in round i, where we allow duplicate
elements and ⊥ is a dummy sentinel value.

Definition 5.0.1. We say that a collection of protocols {pi}i∈[N] is a solution to the payment system problem
in the presence of an f−Adversary with error probability ε if, with probability at least 1 − ε, for all rounds
i ∈ [K] we have

1. (safety S1, non-duplication) ∑
Pn∈H

vn,i ≤
∑
Pn∈H

vn,0

and
∀n ∈ [N], vn,i ≥ 0

2. (safety S2, non impersonation) Suppose Pn1
, Pn2

∈ H, and Pn1
∈ Sn2,i. Then In1,i = n2.

3. (safety S3, self-consistency) Suppose Pn ∈ H. Let δ = 1 if vn,i > 0, 0 otherwise. Then vn,i+1 =
vn,i + |Sn,i| − δ.

4. (liveness L1) Suppose Pn1 ∈ H. Then Rn1,i ⊂ {Pn2 ∈ H|In2,i = n1 ∧ vn2,i > 0}

These properties should hold over all input sequences over K rounds, and over all initial value distributions
{vn,0}n∈[N]. If at most one honest process Pn receives an input In,i 6= n per round, we call this the single
transaction per round model. Otherwise we refer to the multi-transaction per round model.

The best way to get an intuition for these conditions is to consider the special case where v1,0 = 1, and
vn,0 = 0 for n 6= 1. In this case, after each round, call the (at most one) honest process which decides it
has non-zero value the marked process. S1 simply says at most one honest process Pn decides it is marked.
S2 says that if Pn thinks Pn′ was the marked process in the previous round, and Pn′ is honest, then Pn′

was indeed so. S3 and L1 together say that if Pn′ is marked and receives input n, then Pn will decide it is
marked in the next round, and that the previous marked process was Pn′ . In this special case, we such a
problem the marker game/marker problem. Note that this is necessarily a single transaction per round
model. More formally, we have:

Definition 5.0.2. (The Marker Problem) In the same setting as before, processes communicate for K
rounds and have to tolerate byzantine adversaries:

1. If process P1 is honest, it starts with a marker at the beginning of the first round. We say it is ”Marked”.
Otherwise, the marked process is ⊥ (a dummy value indicating no marked process for this round).

2. At the beginning of each round, the marked process M ∈ {Pn}n∈[N]∪{⊥} is given an input Ii = n ∈ [N].
At the end of this round:

2.1. (consistency) At most one honest process Pn ∈ H should decide that it has the marker and become
the ”marked node”.

2.2. (liveness) If M,Pn ∈ H, Ii = n, then Pn should decide that it now has the marker, and that the
marked node in the previous round was M .

2.3. (non-impersonation) If Pi ∈ H becomes marked at the end of this round and M =⊥, then Pi
should decide that the previous marked node was d ∈ ({Pn}n∈[N] ∪ {⊥}) \ H.

23

Similarly to the byzantine generals problem, we can define analogous metrics of solution complexity:

1. Message Complexity Per Round: The total number of messages sent across the network by all
honest processors per round. We let the amortized round complexity be this value divided by the
number of honest processors which made a payment in the round in question.

2. Signature Complexity Per Round: The total number of signatures sent across the network by all
honest processors per round.

3. Round Complexity: The number of time steps taken per round, i.e. T .

The first proposition we prove is that the marker game is as general as a full payment system: if we have a
solution to the marker game, then we can construct one for a payment system as well with minimal overhead.
It will therefore suffice to focus on understanding this simpler problem first.

Proposition 5.0.1. Suppose a collection of protocols {pn}n∈[N] deterministically solve the marker game
with round length T for K rounds. Then there exists a solution {p′n}n∈[N] which solves the payment problem
with round length T for K rounds for any initial marker distribution {vn,0}n∈[N].

Proof. Let V =
∑
n∈[N] vn,0. The key idea is to have p′n simulate V copies of the marker game solution. By

permuting process labels, we can assume without loss of generality that for any n ∈ [N], we have a solution
to the marker game where Pn starts as the marked process. For each n ∈ [N], we obtain a group gn of vn,0
copies of a solution to the marker game {pn′}n′∈[N], where Pn starts as the marked process. We define p′n to
be the process which simulates the V copies of the marker game for each group gn′ , n

′ ∈ [N]. By proposition
3.4.1, we know that we can assume each individual simulation has the same guarantees the marker game
provides.

p′n interacts with its simulations as follows: At each round i, p′n decides that it has value equal to the number
of times it is marked in each of its simulations, i.e. the number of marked simulations it has. If a marked
simulation pn′ of p′n decides that s was the marked process in round i, then p′n includes s in Sn,i. Now
suppose p′n receives input In,i in round i. p′n does the following: First it tries to choose a marked simulation,
otherwise it chooses no simulation (If vn,i > 0, such a marked simulation can be chosen by definition). It
then sets the input register of simulation pn to be In,i, and continues to simulate all V simulations for T
steps. This completes the description of p′n.

For correctness, it suffices to check each condition:

1. (safety S1, non-duplication)∑
Pn∈H

vn,i = the total number of marked simulations across all processes ≤ V =
∑
Pn∈H

vn,0

where the inequality follows by consistency of each simulation. ∀n ∈ [N], vn,i ≥ 0 by construction.

2. (safety S2, non impersonation) Suppose Pn1
, Pn2

∈ H, Pn1
∈ Sn2,i. This means Pn1

, Pn2
run each

of their simulations honestly. Then some marked simulation k ∈ [V] of Pn2
decided that Pn1

sent its
marker to Pn2

in round i. Suppose for the sake of contradiction that In1,i 6= n2. Then Pn1
never set

n2 as input to simulation k in round i. If Pn1 was marked in simulation k at the beginning of round
i, then by liveness In1,i 6= n2 is marked in the subsequent round, but this contradicts consistency of
simulation k at round i+ 1. If Pn1

was not marked in simulation k at the beginning of round i, then
either non-impersonation (if there is no marked process in simulation k at the beginning of round i) or
liveness and consistency (if there is some marked process in simulation k at round i not equal to Pn1

)
of the kth simulation will give as the required contradiction.

24

3. (safety S3, self-consistency) Suppose Pn ∈ H. vn,i is equal to the number of Pn’s marked simulations
at the beginning of round i. By liveness and by construction, this is equal to vn,i−1 plus the number of
newly marked simulations in round i− 1, minus one if Pn sends a marker in some simulation in round
i− 1 (which by construction occurs if Pn has non-zero balance).

4. (liveness L1) Suppose Pn1
, Pn2

∈ H. Then In2,i = n1 implies (by liveness) that by the end of the
round, a marker game simulation belonging to Pn1 decides Pn2 was the previous marked process in
this simulation, so Pn2 ∈ Rn1,i by construction.

One can apply a similar idea to show that a particular solution to the marker game implies one for a full
payment system in the randomized model, with error probability at most V ε (union bound). Note that
in this construction, the round complexity is preserved. If in round i this construction makes payments
{In,i = rn}n∈[N], then the associated message and signature complexities of this construction are equal to
the sums of the corresponding complexities in each of the marker simulations which initiate these payments.

Before moving to analyzing the marker problem in more detail, we preemptively comment on some concerns
the reader may have about the definitions given

1. Why do we only support sending discrete markers instead of general numerical values as payment?
Would we not need to send 106 markers just to make a single payment in some instances? Notice that
traditional hard currency systems solve this problem by giving different discrete objects (i.e. notes)
different values. By issuing a wide variety of different denominations24, people are able to pay a wide
range of values in cash with only a few notes/coins. In the construction of proposition 5.0.1, it is
relatively simple to see how we might mark different simulations as corresponding to different values.

2. Why do we require both the sender Pn1
and the recipient Pn2

to be honest for a payment to go through?
We have two justifications for this: firstly, in a payment between two parties, it is generally implicit
that both parties desire the payment to go through (Pn1

wants to exchange the payment for goods, and
Pn2

would like to receive the payment). Thus each party can only harm their interests by behaving
dishonestly. The second reason is semantics: one might be concerned by the notion that Pn1 is unable
to pay Pn2 unless Pn2 adheres to a strict set of rules, but this seems to undermine the ability of Pn1

to be able to spend its money any way it chooses. Such a concern may be justified if we were dealing
with hard currency backed by a central bank, where all merchants must e.g. accept paper currency as
payment as decreed and enforced by rule of law. However, in the context of a decentralized payment
system, where there is no central authority, there is no means by which to enforce that participants
are forced to accept e.g. Bitcoin as a means of payment. We require Pn2 to be honest in order for Pn1

to be able to make a payment to Pn2 , just as much as we require Pn2 to believe that a cryptographic
string of 0’s and 1’s is something it should provide goods to Pn1

in exchange for. Nothing stops Pn2

from simply turning off their laptop and deciding never to accept Bitcoin as a means of payment again.

3. Why do we require non-impersonation? Why would there a priori be a problem with someone making
a payment while claiming to be someone else? We give two reasons: firstly, this definition is easy to
enforce: if Pn1 wants to send a payment to Pn2 , simply require that they first indicate this fact to Pn2

by sending a signed statement of this intention. The second reason is that this condition gives us the
convenience of being able to easily reduce unauthenticated communication to payment systems25.

4. Why is the fault tolerant model the correct model of security for payment systems? This is an ex-
cellent question. Because crytocurrencies have been so strongly influenced by consensus work, the
fault tolerant model is the trust model which has been traditionally assumed by the cryptocurrency

24For example, imagine a monetary system consisting of the notes 1, 2, 4, . . . , 2n. Then we can pay any integer value in the
range [0, 2n+1 − 1] using at nost n notes

25we will say more on this in the next section

25

community when analyzing the security of distributed payment systems. The primary reason we define
payment systems in this model is therefore so that we can analyze the consensus assumption in the
same context it is traditionally thought to hold in. Recall in section 4 that we justified why such trust
robustness is necessary in the context of the internet: when any particular subset of participants might
be anonymous, or cannot reliably be legally challenged by law enforcement, we cannot rely on any par-
ticular subset of individuals to behave honestly. However, we never argued why such trust robustness
is sufficient. For example, consider the following pathological example: For P1 to send a marker to PN ,
each of P2, . . . , PN−1 is given two choices, either (a) or (b). If at least one of these processes choose
(a), then P1’s marker is sent through successfully. If all of P2, . . . , PN−1 choose (b), then the marker is
randomly distributed to one of the participants P2, . . . , PN−1. If we prescribe all honest processes must
choose option (a), then the payment system just described is fault tolerant for any N − 3 faults! Yet
it is very unclear why we would expect any self-interested party to choose option (a) instead of option
(b); said differently, it is unclear why honesty is the ”default” behavior26. Thankfully, the payment
systems we primarily consider will tolerate any N faults, and will not suffer such pathological cases.
Regardless, we encourage the reader to think about precisely what the fault tolerant model of trust
means in any particular payment system.

26In contrast, ”honesty” is a far more natural default state in the context of more traditional problems thought to be solved
by consensus: For example, one common traditional motivation for Byzantine Agreement is that if you have a collection of
processors in an airplane which communicate together, you would like to make sure that they still collectively reach a valid
decision even when there are some hardware faults. In this context, it is clear why honesty is the default behavior – the
processors were designed to be honest in the first place.

26

Payment Systems in the Fault Tolerant Model

In this section, we will study the relation between the marker problem and the byzantine consensus problem
in the synchronous fault tolerant model. While this setting is less natural for real world payment systems, it
has been well studied for Byzantine consensus, and provides a benchmark on which to compare the problems
of consensus and payment.

Reductions

We begin by analyzing reductions between the two problems. The first observation is that a solution to the
Byzantine Broadcast problem immediately implies a solution for the marker problem through a black box
reduction: in particular, Byzantine Broadcast is at least as hard as the marker problem.

Proposition 6.1.1. There exists a black box reduction from the marker game to Byzantine Broadcast:
Suppose {pn}n∈[N] is a solution which solves the Byzantine Broadcast problem with error ε, tolerating f
faults, with round complexity T , and message and signature complexities mc, sc. Then for any K ∈ N, there
exists a K round solution to the marker problem with message and signature complexity mc, sc per round,
error Kε, and where each round uses T steps of communication.

Proof. We concatenate together K rounds of Byzantine Broadcast, where at each round the new marked
process is the leader of the next round. The marked process M of round i broadcasts their input IM,i to
the network at the beginning of the round, and all honest participants run Byzantine Broadcast with M as
the leader. At the end of the round, all honest processes decide that IM,i is the new marked process, and
continue inductively. We initialize process 1 as being the marked in the first round. We need to check that
such a construction satisfies the conditions of definition 5.0.2. Note by proposition 3.4.1, we can assume that
with probability at least 1−Kε, all simulations of Byzantine Broadcast runs successfully. Conditioning on
this event, we can assume that after the ith round, all honest processes reach consensus on a new marked
process for round i+ 1. Let M be the marked process in round i, and let IM,i = n.

1. consistency: All honest processes reach consensus on a single value at round i, so at most one honest
processes decides it is marked at round i.

2. liveness: if M is honest, then all honest processes decide on the proposed value n. If n is honest, then
Pn decides n at the end of round i, so liveness is satisfied. Since Pn is honest, it knows that M was
the previous marked process because it decided this in the previous round.

3. non-impersonation: If Pn is honest, then inductively Pn decided on the leader/marked process of round
i at the end of round i− 1. If M ∈ H, then n decides M . If M 6∈ H, then n decides M 6∈ H.

This black box reduction gives two immediate corollaries:

Corollary 6.1.1. For any f < N,K ∈ N, there exists a deterministic solution to the K round marker game
which tolerates up to f faults, has message complexity O(Nf) per round, signature complexity O(Nf2) per
round, and T = O(f) steps per round.

Proof. This follows from known solutions to Byzantine Broadcast (proposition 3.2.1) and the black box
reduction (proposition 6.1.1).

Corollary 6.1.2. For any f such that 3f < N and any K, γ ∈ N, there exists a randomized solution to the
K round marker problem which tolerates up to f faults, has message complexity O(γ log(K)N2) per round,
and T = O(γ log(K)) steps per round, with error 2−Ω(γ).

27

Proof. By corollary 3.2.1, there exists a randomized solution to Byzantine Broadcast tolerating f faults with
signature and message complexity O(γ log(K)N2), running in O(γ log(K)) steps, and with error probability
1
K 2Ω(γ). We now apply proposition 3.4.1 to concatenate the Byzantine Agreement protocols together.

We comment that this black box reduction from payment systems to Byzantine Broadcast leads to a kind
of ”global consensus” about the state of the network at the end of each round, and is very reminiscent of
the idea of a public ledger incorporated in cryptocurrencies which use blockchains [35]. On the other hand,
while a Byzantine Broadcast solution can easily solve the marker problem, it is less clear how a solution to
the marker problem relates to Byzantine Broadcast. In particular, the safety and liveness assumptions of
the marker problem are far more local. For example, even in N − 1 payments, it does not follow that by the
end of each round, honest processes will be in agreement with which process has been marked. Indeed, to
get a sense of this locality, consider the following proposition:

Proposition 6.1.2. There exists a deterministic solution to the marker problem which tolerates f faults for
f < N , such that even when all nodes behave honestly, after N − 1 rounds where nodes 1, . . . , N − 1 have
each received a payment, node N does not receive a single message during all rounds.

We will prove proposition 6.1.2 later in section 6.2. This proposition alone doesn’t necessarily say anything:
maybe there is some way we can combine solutions to the marker problem which efficiently solves Byzantine
Broadcast, and shows us that payment systems are ”just as hard” to construct as solutions to the Byzantine
Broadcast problem. We have just given a black box reduction from the Marker Problem to Byzantine
Broadcast; a natural question is therefore whether there exists a reduction the other way:

Question 6.1.1. Does there exist a reduction from Byzantine Broadcast to the Marker Problem?

To answer this question, we first need to formalize what we mean by a reduction. In particular, notice that
we will allow ourselves even more power than is allowed by a black box reduction: our reduction will be
able to look at the ”state” of each process and its sent and received messages and possibly take advantage
of the inner workings of a solution to the marker problem. If it is indeed true that every solution of a
payment system essentially makes use of consensus, then by controlling the payment system and looking at
its operation, we should be able to make all processes reach agreement on some value. We formalize this
idea with the following definition:

Definition 6.1.1. A reduction from Byzantine Broadcast to a solution {pn}n∈[N] of the Marker Game which
tolerates f faults is a protocol solution {p′n}n∈[N] to the Byzantine Broadcast problem tolerating f faults, with
the following exceptions

1. Processes can no longer directly send messages across the network, but can only interact through access
to W uniquely identifiable simulations of the Marker Game solution {pn}n∈[N] (by permuting labels,
we allow different simulations to correspond to different processes starting with the marker). Each
reduction step i corresponds to a single round execution of the marker problem solutions.

2. At the beginning of reduction step i (round i in the marker problem), process Pn can write to the input
register In of the j ∈ [W]th simulation of the marker game, and can view what the jth simulation
decides.

3. At step i, process Pn can also look at the inner workings of simulation w ∈ [W]: for example, the
memory state of the simulation, and all sent and received messages for Pn indirectly made by running
the wth simulation.

We call such a solution a strong reduction. If we remove condition 1. and allow processes to send messages
across the network as well, we call this a weak reduction.

We say that Byzantine Broadcast is strongly/weakly reducible to the Marker Problem with fault tolerance f
if Byzantine Broadcast with fault tolerance f is reducible to every solution {pn}n∈[N] of the Marker Problem

28

tolerating f faults. Again, we comment that if a black box reduction from Byzantine Broadcast to the Marker
Problem exists, then such a reduction would show Byzantine Broadcast is strongly reducible to the Marker
Problem. Thus this definition of reduction is weaker than that of a black box reduction.

For strong reductions, we restrict processes to only be able to use the interface of the payment system to
avoid the trivial case where processes simply ignore the payment system and implement Byzantine Broadcast
by sending messages to each other. What should we be aiming for in such a reduction? Since the reduction
from the Marker Problem to Byzantine Broadcast only used a single black box call to Byzantine Broadcast
per round, and terminated immediately, at best we might hope that conversely there is a clever way to send
around O(1) coins in the network in O(1) steps such that we force every honest process to essentially agree
on something. Certainly, we should be able to do this with any payment system which works by reaching
consensus at the end of every round. On the other extreme, focus on the easier problem of reducing just binary
Byzantine agreement to the Marker Problem. We know there exist solutions to Byzantine Agreement in the
unauthenticated setting (and without any help of a marker solution black box) which run in O(f) steps and
send O(f2) messages when f = O(N) [4]. These solutions imply the existence of naive reductions of similar
complexity which make no use of the essential properties of a payment system whatsoever. Indeed, notice if
we were to have access to a payment system which can send arbitrary values27, we can naively, via a payment
system, simulate having access to a network which can send unauthenticated messages: if all processes start
out with an arbitrarily large amount of money, an honest process Pn1 can send an unauthenticated message
m28 to Pn2

by sending value ENCODE(m) to Pn2
, where ENCODE(m) converts m into an integer. In

the next step, Pn2
receives this value and determines that the sender was Pn1

.

It turns out that the answer to question 6.1.1 is no; in particular, given simulation access to a payment
system, in general we can’t do much better at achieving consensus than we would have, had we not been
given a payment system at all. Payment systems don’t significantly help us solve consensus:

Theorem 1.
For any f ∈ N such that 3f < N , Byzantine Broadcast is not strongly reducible to the Marker Problem in
fewer than f+1

3 simulation steps. If W copies of the Marker Problem are used in the reduction, then the

number of steps of any reduction is at least max(f+1
3 ,Ω(N

fW)). Consequently, there also does not exist any
black box reduction from Byzantine Broadcast to the Marker Problem in fewer than this many black box steps.

For any f ∈ N such that 3f < N , Byzantine Broadcast is not weakly reducible to the Marker Problem in
fewer than f+1

3 simulation steps. If W copies of the Marker Problem are used and M messages are sent in

the reduction, then the number of steps of any reduction is at least max(f+1
3 ,Ω(N−MfW)). Consequently, there

also does not exist any black box reduction, even when allowed to send additional authenticated messages
across the network, from Byzantine Broadcast to the Marker Problem in fewer than this many black box
steps.

We note that since Byzantine Broadcast is reducible to Byzantine Agreement (proposition 3.2.2), the analo-
gous statements hold for Byzantine Agreement as well. We prove this theorem in two parts. First, we give a
solution to the marker problem with round complexity 3, O(f2) signature complexity per round, and O(f)
message complexity per round.

27By a previous footnote, certainly we can send an encoding of value v ∈ N with O(log(v)) markers.
28the only values we really need to send over the network for the solution of binary Byzantine Broadcast are the names of

different processes and the values 0, 1

29

Construction 1. 1. Arbitrarily designate 3f + 1 ”broadcast” processes.

2. (Step 1): At round i, the marked process M sends the signed message mn =”I want to pay process n;
here is a proof p I am the marked process at round i” to each of the broadcast processes.

3. (Step 2): If a broadcast process receives a valid message of the form mn, it signs and sends a message
of the form rn = ”M pays n at round i” to process Pn. If it receives multiple valid messages of this
form, it sends at most one message to a potential recipient during this round.

4. (Step 3) If a process Pn receives at least 2f + 1 signed messages of the form rn, then it decides it has
the marker and M was the sender. Otherwise it decides that it does not have the marker. The 2f + 1
signed messages constitute the ”proof” that Pn is the marked process at round i+ 1. (During the first
round, the ”proof” that P1 is the leader is just an empty string).

Proposition 6.1.3. For any K ∈ N and any f such that 3f < N , construction 1 gives a solution to the
marker problem which tolerates f faults, has round complexity T = 3, and message and signature complexity
per round O(f),O(f2) resp.

Proof. Construction 1 uses T = 3 per round, and honest processes send at most 2× (3f + 1) messages and
O((2f + 1)(3f + 1) + (3f + 1)) = O(f2) signatures per round. We claim this gives a valid construction.
To see this, first note that at any round i, at most one process Pn receives 2f + 1 messages of the form
rn. Suppose not, and two distinct processes Pn, Pn′ have this property. There are at least f + 1 signers in
common between the broadcasters who signed the messages for Pn, and the broadcasters who signed the
messages for Pn′ . At least one of these broadcasters is honest, contradicting that each honest broadcaster
send at most one message during any particular round.

1. Consistency: At most one honest process receives the required number of signatures to decide it is the
marked node.

2. Liveness: If M,Pn ∈ H, M sends a message to all broadcast processes. At least 3f + 1 − f = 2f + 1
broadcast processes forward a message to Pn, and Pn then decides it is the new marked process and
that the previous marked process is M . Because only Pn has a proof it is the marked process, it can
elect a new marked process in the next round if it behaves honestly.

3. Non-impersonation: If M =⊥, then no honest process has a proof that it is marked at round i.
Consequentially, no honest Pn ∈ H which decides it is marked will decide that the previous marked
process was in H.

We comment that solutions for the deterministic marker problem and randomized Byzantine Broadcast both
have expected round length T = O(1). Construction 1 for the marker problem in the randomized setting is
an improvement of the log(K) round complexity derived in corollary 6.1.2.

We can now give a proof of Theorem 1:

Proof. The key idea is to leverage the lower bound results from propositions 3.3.1, 3.3.2 and 3.3.3 to derive
a contradiction.

First consider the strong case, and suppose there is a reduction using fewer than f+1
3 simulation steps. By

proposition 6.1.3, this implies a solution to Byzantine Broadcast which simulates multiple copies of a marker
game, where each simulation step corresponds to 3 network time steps. This solution tolerates f faults and
runs in fewer than f+1

3 × 3 = f + 1 steps, contradicting the lower bound in proposition 3.3.1. Now suppose

that we only use o(N
fW) rounds. By proposition 6.1.3, this implies a solution to Byzantine Broadcast with

30

signature complexity o(N
fW ×f

2W) = o(Nf), contradicting proposition 3.3.2 (we note we could have derived

the same bound by considering the message complexity).

For the weak case, we can repeat the argument which considers the round complexity of Byzantine Broadcast
to get that the number of simulation steps is at least f+1

3 . Suppose for the sake of contradiction that the

number of simulation steps is o(N−MfW). Then by proposition 6.1.3, this implies a solution to Byzantine

Broadcast with message complexity o(N), contradicting the lower bound of proposition 3.3.3.

Best Case Message Complexity

The result from the previous section tells us that, at least from the perspective of reductions in the model we
have given, consensus and payment are fairly different problems. This gives us hope that we might be able
to construct practical payment systems which behave fundamentally differently compared to any consensus
based solution. With this goal in mind, the candidate property we choose to focus on for the rest of this
paper is the best case message complexity of a payment system, which we define to be the number of messages
sent per transaction in the event when all processes behave honestly.29 In particular, we will do our best,
ignoring all other complexity considerations, to focus on building a payment system with good best case
message complexity under reasonable conditions. We make this choice for the following reasons:

1. While round complexity has strong lower bound results in the fault tolerant model, discrete time steps
and round lower bounds don’t realistically translate to protocols over the internet in practice.

2. The signature complexity of a solution in the fault tolerant model does not necessarily translate to
practice either: there are cryptographic techniques to ”compress” chains of signatures in a single
message into a short summary string.

3. Notice that a message complexity of Ω(N) per transaction in the best case is an innate property of any
consensus based solution which reaches agreement on all transactions. This is because all participants
need to agree on the updated state of the network after a transaction, and so need to all send/receive
at least one message. By focusing on reducing the message complexity as much as possible, we will
be forced to end up with solutions to the payment problem which are inherently local: for example, if
only O(1) messages are typically sent per transaction, this would intuitively need to rely on a method
very different to global consensus of transactions.

4. Best case complexity can be a realistic benchmark for practical payment systems. For example, suppose
we only send large amounts of messages when processes are behaving dishonestly. In practice, if a single
individual is causing excessive network stress and this can be detected, they can be ignored/removed
from the network. Moreover, we can naturally build into a payment system financial costs or fees
which are associated with how many messages are sent over the network.

With this goal in mind, we begin by studying the best case complexity of payment systems. Recall from
proposition 3.3.2 that every solution to Byzantine Broadcast requires sending N(f + 1)/4 signatures even
when all processes behave honestly. The message complexity of the marker problem, and payment systems
in general, is slightly more more nuanced. Recall we showed a construction for a payment system which
always sent Θ(f) messages per payment. It turns out that there are payment systems which might only
send any number between 1 and N messages per payment. Moreover, if we make certain assumptions about
the distribution of income in a payment system, we can get away with sending significantly less than Ω(N)
messages per payment. We start by giving an analogous result for some metric of the message complexity of
any deterministic payment system which closely mirrors that of proposition 3.3.2 for Byzantine Broadcast:

29Note that the payment system is still robust to f processes behaving dishonestly, but the number of messages sent may
increase in this case.

31

X(n1) X(n2)

n2Zn1

Figure 1: Lemma 6.2.1

Proposition 6.2.1. For any K = 1 round, T step deterministic solution to the marker problem tolerating
f faults, let zn denote the number of messages sent by all processes after T steps when the marked process
M = P1 receives input I1 = n and all processes behave honestly. Then∑

n∈[N]

zn = Ω(Nf)

We note that this result holds even in the case of a weak adversarial model, where the adversary is only able
to simulate two copies of honest protocols (it does not take advantage of being able to see the entire network
state). To prove this, first we will give a lemma, which in itself will be instructive in constructing a new
solution to the marker problem. Let X(n) be the set of processes which either send or receive a message
during the first T steps when P1 receives input I1 = n (so zn ≥ 1

2 |X(n)|), and all processes behave honestly.

Lemma 6.2.1. Let Pn1
, Pn2

∈ {Pn}n∈[N] \{P1}, and D := X(n1)∩X(n2). Then either (i) Pn1
is contained

in X(n2) or Pn2
is contained in X(n1), or (ii) |D| ≥ f − 1.

Proof. Suppose the claim were false: namely Pn1
, Pn2

6∈ X(n1) ∩ X(n2), but |D| ≤ f − 1. We now give
a dishonest protocol each of the processes in Z := D ∪ {P1} can follow (|Z| ≤ f) which allows P1 to pay
both processes Pn1

and Pn2
its coin (i.e. ”double spend”), resulting in both processes deciding they are the

marked process for the next round, contradicting the consistency property of definition 5.0.2. The scenario
is as follows:

Have each node in Z run two copies of the honest protocol (without nonces); the first copy corresponds to
a simulation where P1 pays Pn1

, and the second simulation corresponds to a simulation where P1 pays Pn2
.

When Pna
, Pnb

∈ Z send messages to each other, they prepend a label ∈ {0, 1} to their messages to indicate
which simulation copy the message belongs to. When they send messages to honest processes not in Z, they
omit this label. When they receive messages from processes not in Z, they can infer which simulation the
message belongs to because the sets X(n1) \ Z,X(n2) \ Z are disjoint. To start off the simulation, we have
P1 ∈ Z run two copies of honest protocols for P1, one where it ”imagines” its input being I(1) = n1, and
the other where it imagines I(1) = n2.

32

Notice the following: after T steps, the sent and received messages for all processes in X(n1) − Z are
identical to those in the case where all processes are honest and P1 has input I(1) = n1. Thus Pn1

decides
it is marked after T steps. But the same argument tells us that Pn2

decides it is marked as well, leading to
a contradiction.

Notice that in Construction 1, we always have |D| ≥ 3f + 1, and so this construction represents the ”one
extreme” of the condition in Lemma 6.2.1, namely we always have |D| ≥ f − 1. One might therefore wonder
if it is possible to construct a solution which always satisfies the other extreme. Indeed, after finishing the
proof of Proposition 6.2.1, we will construct a deterministic solution to a payment system which respects the
”other extreme” of this condition, namely it will always be the case that either Pn1 is contained in X(n2)
or Pn2

is contained in X(n1). For now, we complete the proof:

Proof. By lemma 6.2.1, ∀Pn1 , Pn2 ∈ {Pn}n∈[N] \ {P1}, either (i) Pn1 ∈ X(n2) or Pn2 ∈ X(n1), or (ii)
|X(n1) ∩X(n2)| ≥ f − 1. Define

K1 = {n ∈ [N] \ {1}||X(n)| ≥ f − 1}

and its relative complement

K2 = [N] \ ({1} ∪K1)

By condition (ii), it is easy to see that ∑
n∈K2

|X(n)| ≥ |K2|(|K2| − 1)

2

because for each unordered pair (n1, n2) with n1, n2 ∈ K2 we have either Pn1 ∈ X(n2) or Pn2 ∈ X(n1).
Thus we have

2
∑

n∈[N]\{1}

zn ≥
∑

n∈[N]\{1}

|X(n)|

≥ min
|K2|∈R+

|K2|(|K2| − 1)

2
+ |K1|(f − 1)

= min
|K2|∈R+

|K2|(|K2| − 1)

2
+ (N − 1− |K2|)(f − 1)

= f(N − 1

2
)−N +

7

8
− 1

2
f2 = Ω(Nf)

As a sanity check, note that Construction 1 satisfies this lower bound and is tight: we have
∑
n∈[n] zn =

N × 2× (3f + 1) = N(6f + 2).

The intuition for Lemma 6.2.1 is as follows: either the intersection X(n1)∩X(n2) is Ω(f), so we can guarantee
that there is some honest process within this intersection who will prevent P1 from double spending. This is
very similar in spirit to usual Byzantine Consensus reasoning. If this isn’t the case, then the only other way
we can guarantee P1 can’t double spend after paying Pn1

is if Pn2
itself saw P1 spending its coin already,

and hence Pn2
∈ X(n1); this is the point at which the reasoning for payment systems formally differs from

that of Byzantine Consensus in the fault tolerant model, because we stipulate that Pn2
must be honest if it

is to have any protection from this double spending30.

30wheres in Byzantine Consensus, we wouldn’t be able to assume that this particular fixed process behaves honestly.

33

How might we construct a payment system where the property Pn2 ∈ X(n1) or Pn1 ∈ X(n2) always holds
(in general, even when P1 isn’t the starting marked process)? One (and the only) way to do this is to connect
all processes together in a directed cycle, and stipulate that payments can only move ”across” the cycle.
Since any two paths on a directed cycle originating from a common point always meet at some endpoint
on one of the paths, this will give us the desired property. Using this idea, we now try to give another
solution to the marker problem where the number of messages sent per transaction is highly variable – some
transactions only require O(1) messages in the best case, but only under highly unrealistic assumptions about
the distribution of payments. In part IV, we will then use this construction as a building block to outline
how we can achieve O(log(N)) messages per transaction in the best case under more reasonable assumptions
about the distribution of payments.

(1)
0

1

23

4

5

B
egin

paym
ent

to
3

(2)
0

1

23

4

5

R
eq

ue
st
c
′

(3)
0

1

23

4

5

R
eq

u
est

c ′

(4)
0

1

23

4

5

Send
c ′′

Figure 2: Illustration of a payment from process P0 to process P3 in construction 2.

34

Construction 2. (Cycle Coin):
For simplicity, we will first describe a construction which almost works, and requires all processes (regardless
of whether they are faulty or not) respond in a particular way which is detectable. We will then describe
how to remove this assumption.

We number the N processes from 0, . . . , N − 1. Begin by connecting all processes into a cycle, with Pn
directionally connected and leading to Pn+1 mod N . We let Pa,b denote the path along this graph which
connects Pa to Pb, with Pa included and Pb excluded. If a = b, then we let Pa,b be the empty path. Recall if
we have values vi, we let (. . . ((v · v1)Pi1

· v2)Pi2
· · · · vik)Pik

denote the string produced when v · v1 is signed
by Pi1 , the resulting string is concatenated with v2 and then signed by Pi2 and so on. Notionally, we rewrite
this as (v)[v1Pi1 , . . . , vkPik]. We define a chain of length 0 ending at P0 and extended by P0 to be the string
(””)P0 = ()[P0] = [P0]. We define a chain of length i ending at Pend and extended by Pext to be a string
of the form (c)[Pi1 , xPext, Pi2 , xPext, Pi3 , xPext, . . . , Pik , yPext], where c is a chain of length i − 1 ending at
Pext, and Pext = Pi1 , . . . , Pik are the processes along the ordered path PPext,Pend

. We let (n1, ..., nk) denote
a chain c of length k constructed by a chain of length 1 ending at Pn1

, extended by Pn1
to a chain of length 2

ending at Pn2
, and so forth, and finally ending at Pnk

(note that there is a bijective correspondence between
a chain c and its representation (n1, ..., nk)). As some concrete examples where N = 6:

(0) = [P0, (yP0)]

(1) = [P0, (P0, yP0)]

(2) = [P0, (P0, xP0, P1, yP0)]

(3) = [P0, (P0, xP0, P1, xP0, P2, yP0)]

(1, 3) = [P0, (P0, xP0), (P1, xP1, P2, yP1)]

The chain of length 0 corresponds to the empty tuple (). Given a chain c = (n1, ..., nk), we let weight(c)
be the length of the walk consisting of the paths P0 → Pn1 → · · · → Pnk

along the cycle (where we
interpret Pa → Pa as the empty path). A partially constructed chain c′ is a string of the form c′ =
(n1, . . . , Pext)[Pi1 , xPext, Pi2 , xPext, Pi3 , xPext, . . . Pik , xPext] with Pi1 → · · · → Pik being some cycle path
starting from Pext. Given a partially constructed chain c′, we let weight(c′) denote the weight of the
(complete) chain produced by replacing the last xPext with yPext.

The key property of the protocol is the following: an honest protocol Pn will decide it is marked iff it receives
a chain ending at Pn, and it knows there does not exist a chain of greater weight. Pn can be certain of
this fact because if there were ever a chain of greater weight, Pn would have had to sign it. Likewise, Pn
can always prevent chains of greater weight from being produced once it has decided it has been marked,
by refusing to extend chains. Inductively, Pn can then extend the chain of greatest weight to a new process
Pend as a form of payment. The details are as follows:

35

1. At round 0, the marked process P0 begins with the empty chain () of length 0.

2. At round i = 0, . . . ,K − 1, the marked process M has a chain c of length i ending at M : we say c
”marks” M . It then does the following on receiving input IM = n:

2.1. M communicates with all processes on the path PM,Pn
to create a chain c′′, where c′′ is extended

by M , contains c as a prefix, and ends at Pn. If Pn 6= M , M does this by beginning with the partial
chain c′ = ((c)M · x)M : for each process on the path PM,Pn

in order (excluding M), M messages
process Pij with query c′ and asks it to send back (c′)Pij

. M then updates c′ = ((c′)Pij
·x)M and

moves to the next process in the path, or updates c′ = ((c′)Pij
· y)M if Pij is the last process on

the path. If all processes on PM,Pn
comply, this takes at most O(|PM,Pn

|) messages.

2.2. M then sends the completely constructed chain c′′ to process Pn

3. At round i = 0, . . . ,K − 1, an honest process Pn reacts the following way to a request from Pa to help
extend a chain c to a chain c′′. We assume Pn is sent a partially constructed chain c′ which it is asked
to append its signature to.

3.1. Checks that c is a chain of length i, and that c ends at Pa, and that the form of c′ is valid. These
properties are required for Pa’s request to be valid, and these properties can be verified by any
process.

3.2. If Pn has previously signed a partial chain γ with weight(γ) ≥ weight(c′), then Pn refuses to
extend c′ and replies with (γ)Pn

instead.

3.3. If Pn has received a chain γ ending at Pn with weight(γ) ≥ weight(c′), then Pn refuses to extend
c′ and replies with γ instead.

3.4. Otherwise Pn responds to Pa with (c′)Pn
. Pa can then create a partial chain ((c′)Pn

·x)Pa
or chain

((c′)Pn
· y)Pa

with weight one greater than c′.

4. At round i = 0, . . . ,K − 1, an honest process Pn reacts the following way when receiving a chain c of
length i+ 1 ending at Pn:

4.1. If Pn has not signed a partial chain γ with weight(γ) = weight(c), and Pn has not previously
received a chain γ ending at Pn with weight(γ) = weight(c), then Pn decides it is the marked
process for the next round, and that the marked process in the current round is the extender of c.

Proposition 6.2.2. Suppose that all processes, regardless of whether they are faulty, always produce some
valid response when requested to append their signature to a valid partial chain in construction 2. That is,
they always comply with an extension request, or publish a ”proof” that they are not required to extend a
particular request.31 Then construction 2 is a solution to the marker problem which tolerates f < N − 1
faults. If at round i, M sends the marker to Pn, then the number of steps taken and number of messages
sent until Pn decides that it is the marked process for round i+ 1 is O(|PM,Pn

|).

Moreover, M has a proof it has paid Pn in the following sense: If a third party Alice would like a proof M
paid Pn at round i, then M sends to Alice the chain c of length i+ 1 ending at Pn it used to pay Pn. Alice
then sends c to Pn. After Alice sends c to Pn, if Pn has not yet decided it is the marked process at round
i + 1, then Pn has a chain or partial chain γ with weight(γ) = weight(c) which does not equal c, which
proves M did not pay Pn or M is dishonest32. In particular, Pn cannot produce such a proof if M is honest.

31Technically, we only require that the processes on the payment path PM,Pn behave in this way.
32In the future, we will use the term dishonest to refer to both (a) M not following the prescribed protocol, and (b) M lying

about paying Pb

36

Proof. We need to check the three conditions:

1. Consistency: Suppose for the sake of contradiction that two distinct honest processes Pn, Pn′ both
decide in round i they are marked for round i+ 1. Then both processes possess corresponding chains
cn, cn′ of length i + 1 which end at Pn, Pn′ and are extended by Pext, Pext′ resp. Without loss of
generality, assume weight(cn) > weight(cn′). But then it must be the case that Pn′ signed a prefix
chain/partial chain γ of cn with weight(γ) = weight(cn′). By construction, Pn′ does not do this in
round r ≤ i if it receives cn′ before being requested to make this signature; thus Pn′ must have decided
it was marked after signing γ, but this is a contradiction.

2. Liveness: When M decides it is marked by c, there exist no other chains or partial chains of greater
weight (otherwise M would have had to sign them). By construction, this means when M messages
a process Pj ∈ PM,Pn

with partial chain c′ in an attempt to extend c′, Pj can only give the response
(c′)Pj

. This is because M is required to sign the end of every partial chain extended by M , and so
during this process the only partial chains of maximum weight that have been produced by the network
are the partial chains M explicitly creates, and all chains constructed up until this time have weight
≤ weight(c) (because M never appended y)M to a partial chain with weight ≥ weight(c) − 1). Thus
after M receives a response from the last process in the path, M will have a string γ which it can sign
to produce a completed chain c̃ = (γ · y)M , where c̃ is extended by M , ends at Pn, and contains c as
a prefix. M then sends c̃ to Pn. By construction, Pn will not have previously seen a chain of greater
or equal weight ending at Pn, nor will Pn have signed a partial chain of weight ≥ weight(c̃). If Pn is
honest, then Pn correctly decides that M was the previously marked process and that Pn is the next
marked process.

3. Non-impersonation: By the previous paragraph, the only way for an honest process Pn to accept a
payment via chain c, and decide c was extended by honest process Pa, is if Pa was indeed the extender
and appended its signature to the end of c.

Note the following: if M is honest and marked via chain c during round i, then all chains and partial
chains of weight greater than weight(c) produced by the network will have c as a prefix: suppose not, and
that γ is a chain/partial chain which does not contain c as a prefix. Let γ′ be the prefix chain/partial
chain of γ with weight(γ′) = weight(c), γ′ 6= c. Then (γ′)M is a prefix of γ, but by construction if M
decides it is marked by chain c in round i, it will never sign and never has signed γ′, contradicting that γ
exists. With regards to the proof of payment, note that if M ∈ H is marked by chain c, and did indeed
pay Pn with chain c′′ extended by M from c, then all partial chains γ which do not contain c as a prefix
satisfy weight(γ) ≤ weight(c) < weight(c′′), and all chains γ which do not contain c as a prefix satisfy
weight(γ) ≤ weight(c) < weight(c′′), so Pn cannot prove M is dishonest. Conversely, if chain c′′ is not a
valid chain which causes Pn to accept a payment from M in round i, then Pn has seen a chain/partial chain
γ 6= c′′ with weight(γ) = weight(c′′).

It remains to explain how we can deal with the issue that a dishonest process Pn may refuse to respond
altogether, instead of validly responding to an extension request. We can solve this problem by running
Byzantine Broadcast as a subprocess. Suppose a process Pa (honest or not) sends an extension request to
process Pb for the extension of a partial chain c′, and Pb does not respond validly within the correct time.
We then allow Pa to broadcast to all processes that it would like the network to decide on the response
Pb gives to query c′. Importantly, note that we are not saying anything about deciding the guilt of Pb (for
example, it could be that Pa simply behaved dishonestly and ignored Pb’s valid response). Assuming all of
this works, all honest processes then reach an agreement on some valid extension γ of c′ which is produced
by Pb, or the default null value ⊥. If all processes agree on a valid extension γ, then in particular Pa decides
on a valid response γ from Pb and the problem is resolved33. Note this case occurs if Pb is honest. If Pa

33γ is necessarily a response from Pb, because it ends with Pb’s signature which cannot be forged

37

instead decides on ⊥(Pb is dishonest), then we have all honest processes ”imagine” that Pb is deleted from
the network, and Pb’s signature is no longer required to construct chains.

We need to be slightly careful about how we implement this idea. We give concise details below:

Construction 3. (Proof of response for construction 2)

During round i, the marked node M tries to extend c by asking for extensions along the path PM,n. We
break this up into N time periods (the maximum number of extensions needed) each of a predefined number
of steps, where during the kth time period:

1. At step 1, M sends an extension request c′ to Pj , the kth process in PM,n (this time period is empty
if k > |PM,n|)

2. At step 1 in this time period, all honest processes each initialize N2 instances of Byzantine Broadcast
in parallel, the implementation of which is detailed in the proof of proposition 3.2.1. Each instance
(a, b) ∈ [N] is a Byzantine Broadcast protocol for Pa to issue a network query for Pb about a query
request c′. The essential property of this particular implementation of Byzantine Broadcast is that no
messages are sent if the broadcaster does not broadcast anything.

3. At step 2, if Pj does not respond, M broadcasts (c′, Pj) to the network.

4. At step z = O(f), all the N2 Byzantine Broadcast protocols have terminated. If M is honest and
broadcasts (c′, Pj), then all honest processes will decide this. Each honest process checks that the
request c′ is valid, otherwise the request is ignored.

5. For a further O(f) steps, all honest processes run Byzantine Broadcast to reach agreement on any
network queries of responsiveness for any process Pb. If a response of c′ is requested for Pb, then
Byzantine Broadcast is run with Pb as the leader, and Pb’s broadcast is taken as its response. By
the end of these steps, all honest processes agree which queries were made, and the responses to these
queries.

In total, each payment now takes T = O(fN) steps to complete. However, the number of messages is
still only O(|PM,n|) per round when all processes behave honestly, because no messages are sent by the
Byzantine Broadcast protocols in this case. When processes behave dishonestly, the number of messages is
O(N ×N2 ×Nf) = O(N5) per round in the worst case.

As a sanity check, note that construction 2 satisfies the lower bound of proposition 6.2.1 and is tight as well:
when all processes behave honestly,

∑
n∈[N] zn =

∑
n∈[N−1] Ω(n) = Ω(Nf) since the construction tolerates

f = N − 2 faults.

We now build on the ideas in this construction to give a fully fledged payment system which is robust to
any f < N − 1 failures. Moreover, if we have some control over the distribution of income and spending
patterns, then when all processes behave honestly, the message complexity is at most O(log(N)). This
marks a distinct shift from constructions of payment systems which are based on consensus mechanisms
which reach agreement on all transactions, where Ω(N) messages per transaction are inherently required.
The central idea is that if we could only ”hop around” the parts of cycles which are large, then we could
avoid the payment paths which require Ω(N) messages.

38

Part IV

Extending The Fault Tolerant Model

Locality Through Trust

We ended the last section by giving a simple construction of a payment system which has some degree of
locality : in some transactions, only a few neighbouring processes are messaged in order for a transaction
to occur. In this section, we will show how by expanding our model in a natural way, we can significantly
bootstrap this locality to construct deterministic payment systems whose payments are highly local, and give
best case message complexity significantly better than that of randomized consensus solutions, while still
tolerating an arbitrary number of faults.

Trusted Anonymous Third Parties For Indirection

The idea of having a trusted third party to mediate interactions between processes in a network has been
used successfully to design a number of efficient protocols34. However, we argue that there is a certain kind
of trusted third party model which is particularly natural to payment systems. We give a story to motivate
this kind of trust:

Suppose Alice would like to pay Bob $100 for the comic books he gave her. However, unfortunately Bob’s
account is held with bank B, while Alice’s account is held with bank A, and it is known that there is a
very high transaction fee for transfers between these two banks. Luckily, Alice finds an advertisement on
the internet from a fellow comic book enthusiast Charlie. Charlie’s account is held with bank C, which
happens to have very good transaction rates with both banks A and B. Alice hatches a plan: if she can ask
Charlie to pay Bob on her behalf, then she could pay Charlie back the difference. With all the savings, she
might even be willing to give Charlie an extra transaction fee, and then everyone (except the banks) would
get a profit. However, Alice and Charlie have never met, and so Alice is cautious about trusting Charlie.
To begin with, she sends Charlie $1. Charlie, being the honest comic book enthusiast he is, happily sends
across Alice’s $1 to Bob. Alice then asks Bob to confirm the transaction went through. Being a little more
confident now, Alice decides to send through $2. Over time, Alice and Charlie might begin to develop a
trusting relationship. If Charlie ever cheats and doesn’t pay Bob on Alice’s behalf, then Alice will know
and stop using Charlie as an intermediary. Moreover, she will only lose at most the maximum amount she
transacted through Charlie at any single time. Charlie probably doesn’t want to cheat: he would lose a
profitable revenue stream of future payments from Alice, and Alice might start ruining Charlie’s reputation.
In reality, we are more likely to have a free market situation: multiple agents like Charlie will try to build
a business as efficient intermediaries between Alice and Bob. If an intermediary ever cheats, there will be
many more intermediaries to happily take its place. The key properties of this scenario which make third
party trust natural are35

1. Alice can detect when Charlie is cheating, and get a guaranteed bound on her loss.

2. Alice can stop using Charlie after Charlie cheats once.

3. There are plausible financial incentives for there to exist many choices of good intermediaries Alice can
turn to instead.

34for example, secret sharing and anonymous messaging.
35We note that this model of trust is also the de facto model under which Bitcoin has been operating under in certain

contexts: participants will pay goods and service providers in digital currency on the belief that these participants will send
them physical goods or provide services in return. Sometimes these providers can be completely anonymous, sometimes the
goods themselves are legally questionable, and sometimes the service provides are foreign cryptocurrency startups with unclear
legal regulation. There is therefore little opportunity for legal recourse if a trust assumption proves to be invalid.

39

Notice that it also makes sense to allow for multiple intermediaries, provided the number of intermediaries
is small: Alice may ask Charlie to pay Bob. Instead of Charlie paying Bob directly, it may be cheaper for
him to pay Bob via Sam, and so forth. We distill this discussion of trusted payment intermediaries into the
following definition:

Definition 7.1.1. In a trusted payment intermediary model of payment systems where process Pa
would like to send a coin to Pb, we add the optional functionality of allowing process Pa to form voluntary
agreements with a subset of intermediary processes {Pij}j∈[Z] with the semantics ”I, Pij , promise to facilitate
the payment of Pa to Pb”. We say the payment system in this model is valid if, when such such agreements
are used to transact, they have the following properties:

1. If Pa, Pb, {Pij}j∈[Z] are honest, then the transaction from Pa to Pb is completed: Pb decides Pa send a
coin to Pb in the appropriate round.

2. If Pa is honest but Pb claims it was not paid, then Pa decides that at least one process in {Pij}j∈[Z]∪{Pb}
cheated.36

3. If Pc ∈ {Pij}j∈[Z] ∪ {Pb} is honest, then Pa does not decide that Pc cheated.

We give no guarantees that the payment will succeed or that Pa will keep its coin if Pa uses these agreements
to transact and any of the parties behave dishonestly.

From the previous section, we know the following payment system exists:

Corollary 7.1.1. Given any complete directed cycle C on the participant processes, there exists a payment
system in the single transaction per round, deterministic model tolerating any f < N−1 faults which supports
any initial coin distribution and has the following additional properties:

1. If any process Pc falsely claims to pay some other process Pb in round i, then Pb has a proof to any
third party Pa in the sense of proposition 6.2.2 that Pc is dishonest.

2. If a process Pa pays a process Pb in round i, and all processes processes are honest, then the message
complexity of this round is O(|PPa,Pb

|).

Proof. This follows immediately from the cycle coin solution to the marker problem (construction 2) and the
reduction given from payment systems to the Marker Problem (proposition 5.0.1), because the cycle coin
construction sends no messages when a marker pays itself in a round.

Using this building block, we are now ready to give the construction of a payment system which uses
indirection between cycles to reduce message complexity. The key idea is the following: construct a payment
system by stacking together many cycle payment systems consisting of cycles of different permutations.
Now imagine that Pa would like to pay Pb. Since Pa has non-zero balance, it has a coin in at least one
of the subcycles C which make up the payment system. Now Pa has a choice: Pa could pay Pb using the
subpayment system C. But if Pa is very far away from Pb on the cycle, Pa might be lucky by finding another
process Pc such that (a) Pa is close to Pc on cycle C, and (b) Pc is close to Pb on some other cycle C ′. If Pc
has a coin on cycle C ′, then the following can happen: Pa pays Pc on cycle C, and Pc promises to ensure
that a payment gets to Pb. Pc then pays Pb on cycle C ′, and sends Pa a proof of payment equal to the chain
it used to pay Pb. By ”hopping between cycles” we are able to reduce the number of messages we need to
send per transaction. In general, we might make multiple hops for a single payment.

36We only stipulate that Pa can decide only one intermediary is honest for the following reason: it will be the case, as in the
bank analogy, that only one intermediary is required to be dishonest for the transaction to fail: thus only one intermediary is
really ”responsible for” causing the transaction to fail, and it becomes technically messy to talk about multiple intermediaries
being dishonest. Moreover, if multiple intermediaries have ill intentions towards Pa, they could always collude so that only
one of them needs to behave dishonestly at each round, while still preventing payment at each round. Of course, Pa may then
decide to use an entirely different set of intermediaries all together if a payment fails, and different intermediaries may form
their own preferences about which other intermediaries are the most reliable to work with.

40

Proposition 7.1.1. Consider a collection of K cycle payment systems of the form described in corollary
7.1.1, with associated cycles C1, . . . , CK

37. Concatenate these payment systems together to form a new
payment system PS′ as in the proof of proposition 5.0.1 which tolerates f < N − 1 faults, and let F ⊂
{Pn}n∈[N] be a set of ”trusted intermediary” processes.

At round i, let V alue(Ck, n) denote the value of process Pn in the payment system associated with the
simulation of payment system Ck, and define the following graph Gi on the vertex set [K]× [N] and edge set
E:

((k, Pa), (k′, Pb)) ∈ E if k = k′ ∧ (Pa, Pb) ∈ Edges(Ck)

(cycle step) or

((k, Pa), (k′, Pb)) ∈ E if V alue(Ck′ , b) > 0 ∧ a = b ∈ F

(cycle hop)

Let W = {k ∈ [K]|V alue(Ck, a) > 0} and Da,b = mink∈W,k′∈[K] distGi
((k, Pa), (k′, Pb)). Then in the trusted

payment intermediary, single payment per round model, we can define the payment system PS′ to have the
following property:

At round i when honest process Pa makes a payment to honest process Pb, if Pa can find a path P of length L
in Gi by using M messages, and all processes behave honestly, then the message complexity of a transaction
from Pa to Pb is O(M+L). In particular, if Pa knows Gi at the start of round i, then the message complexity
is O(Da,b). Moreover, if O(|P |) trusted intermediaries on the path P behave honestly, then Pa’s payment is
guaranteed to go through to Pb.

We comment that it is a straightforward extension to consider a different set of trusted intermediates Fn for
each different process Pn, however the core ideas are captured by this statement.

Proof. Using the primitives we have developed, we describe one potential way for Pa to send a payment to
Pb:

1. Let the path from Pa to Pb be P . P consists of a number of cycle hops and cycle steps. Let (Pi1 , . . . , PiZ)
be the intermediate processes which facilitate the cycle hops in path P (see figure 3).

2. We define a macro round which consists of a large number of micro rounds. Each macro round
corresponds to a single round in PS′. Each micro round corresponds to a single round in the simulated
cycle payment systems. We might fix the number of micro rounds per macro round to be some upper
bound on the diameter of the graph Gi.

3. At macro round i, Pa receives input b ∈ [N] during the execution of payment system PS′. Pa now
sends O(|P |) messages to the intermediate processes Pi1 , . . . , PiZ asking for a promise of the form ”I,
Pij , will pay Pij+1 in micro round j + 1, if I receive a payment from Pij−1 in round j”. We notate
Pi0 := Pa, PiZ+1

:= Pb.

4. At microstep j = 0, . . . , Z, Pij pays a coin to Pij+1
using the path Pij → Pij+1

along the appropriate
cycle Ck determined by P (cycle steps). Such an action is possible because (we assume without loss of
generality) P does not contain two cycle hops from the same process, and V alue(Ck, Pij) > 0 at the
beginning of macro round i. By corollary 7.1.1, all of these actions combined take O(|P |) messages to
perform assuming all processes behave honestly.

5. At the end of all the microsteps, Pa asks for proofs from all the intermediate processes that their
payment obligations were satisfied.

37we will interchangably refer to payment systems through their associated cycles

41

6. Conceptually, we have Pa sign a message to Pb at the beginning of macro round i indicating that it
intends to send a payment, and sends the signed promises of the intermediate processes Pij to Pb as
well. If Pb receives a payment from PiZ , it then decides that Pa paid Pb in macro round i.

To see that this gives a valid payment system in the trusted payment intermediary, single transaction per
round model, we need to check a few conditions. First note that S1 (non-duplication) in Definition 5.0.1
always holds, because it holds for each simulated payment system for any number of faults f < N − 1.
We assert that when no intermediaries are used, non-impersonation, self consistency and liveness in round i
hold by the construction given in the proof of Proposition 5.0.1. The new content we need to check is what
happens when intermediaries are used in round i. We will check non-impersonation still holds, liveness holds
when the intermediaries are honest, and that in the case Pb claims it is not paid, the conditions of definition
of the trusted payment intermediary model (definition 7.1.1) are met.

1. non-impersonation: Pb only decides that Pa paid Pb if it explicitly receives a signature from Pa indi-
cating it will pay Pb at round i. Therefore if Pa is honest and does not pay Pb at round i, it cannot be
impersonated.

2. Liveness and proofs of honesty: If Pa, Pb, {Pij}j∈[Z] are honest, then the payment goes through as
described. If Pb claims it did not receive a payment from intermediary PiZ , then Pa can iteratively
go through each of the processes in the order Pb = PiZ+1

, PiZ , PiZ−1
, Inductively, at step j, if Pij

claims it was not paid by Pij−1
, then either Pij−1

claims it did pay Pij and we have a proof of whether
Pij−1

is being honest by corollary 7.1.1, or Pij−1
admits it did not pay Pij , because it was not paid by

Pij−2
. In this case, Pa recursively moves down to step j − 1. At step j, if Pj is honest, then either Pj

is able to prove to Pa that it did pay Pj+1, or Pj−1 is unable to prove to Pa that it paid Pj . Thus Pa
will not decide that Pj cheated. Since Pb claims it was not paid and Pa paid Pi1 by assumption, Pa
will decide that at least one of Pb∪{Piz}z∈[Z] cheated. Thus this protocol satisfies all of the conditions
of Definition 7.1.1.

42

0

1

23

4

5

5

2

41

0

3

3

1

23

5

0

step

cycle hop

cy
cl

e
st

ep

cy
cle

h
op

cycle step

Figure 3: Illustration of a payment from process P4 to process P3 consisting of a series of cycle hops and cycle
steps. The payment system consists of a concatenation of 3 cycles: We have V alue(C1, P4) > 0 in the inner
cycle, V alue(C2, P5) > 0 in the middle cycle, and V alue(C2, P2) > 0 in the outer cycle. The intermediaries
are P5 and P2.

We comment that in the above construction, it is not actually necessary for Pa to know the entire path to Pb
in advance, and we can change the semantics of the intermediate trust assumptions as well: for example, Pa
could simply forward the payment to Pb which it thinks is a good intermediate process for this transaction.
Pb can then sign the promise ”I promise to make sure a payment gets to Pb by time t”, and assume full
responsibility and trust. Provided Pb can figure out the remaining short path and find its own trusted
intermediaries, the message complexity can still be made small.

We will refer to payment systems of the form described in proposition 7.1.1 consisting of cycles C1, . . . CK as
a cycle payment system with cycles C1, . . . , CK

38. We now define an unnecessarily strong condition on the
spending distribution in a payment system which allows us to state some simple constructions which give
low message complexity:

38Thus C1 is a cycle payment system consisting of the cycle C1.

43

Definition 7.1.2. Consider a cycle payment system consisting of cycles C1, . . . , CK . We say that the system
is balanced in the single transaction per round model if, during the beginning of every round, we have that
V alue(Pn, Ck) > 0 for all n ∈ [N], k ∈ [K].

Theorem 2. Suppose for simplicity that F = [N]39. Then there exists a deterministic cycle payment system
consisting of 2K ≥ 4 cycles C1, . . . , CK and tolerating any f < N − 1 faults in the trusted payment interme-
diary model, such that if the payment system is balanced, the best case message complexity is O(logK(N))
per transaction. The number of trusted intermediaries per transaction is also O(logK(N)).

Proof. Pick a random, undirected r = 2K ≥ 4 regular graph on N processes, GN,r. We use two well known
properties about such graphs:

1. If r ≥ 4 is even, then GN,r asymptotically almost surely has a complete Hamiltonian decomposition
into edge disjoint Hamiltonian cycles t1, . . . , t r

2
. [16]

2. Almost every r regular graph has diameter at most d ≥ O
(

log(3rN log(N))
log(r)

)
= O(logrN). [5]

Thus, for sufficiently large N , we can pick GN,2K such that it has diameter O(logK N), and can be decom-
posed into undirected Hamiltonian cycles t1, . . . , tK .

For each undirected ti, choose two directed cycles C2i, C2i+1 for each direction around the cycle ti. Now
construct a cycle payment system PS consisting of the cycles C1, . . . , C2K . Now we invoke proposition 7.1.1:
consider the corresponding graph Gi at round i in the statement of the proposition. Because PS is balanced,
the cycle hop edges of Gi do not change between rounds. Consequently, Gi is fixed for all i, and determined
by the cycles C1, . . . , C2K ; thus we can assume each process Pa can compute shortest paths in Gi for any
round i without the need to send any messages. Moreover, we claim that maxa,b∈[N]Da,b = O(logK N), from
which the claim follows by proposition 7.1.1. To see this, notice that for any a, b ∈ [N], given a shortest path
P in GN,2K connecting Pa to Pb, we can find a corresponding path in Gi with at most twice the number of
edges: The path P can be decomposed into a sequence of paths l1 → · · · → lz → · · · → lZ where each lz
moves in a particular direction around some Hamiltonian cycle tjz , and tjz and tjz+1

are distinct cycles. For
notational convenience, we will say that lz ends at the same vertex lz+1 begins (so that adjacent paths share
endpoints). By the choices of the cycles C1, . . . , C2K , we can follow each path lz in GN,2K with a path l′z of
the same length in Gi, by following the corresponding cycle (either C2jz or C2jz+1, depending on orientation)
in Gi: both paths begin and end at the same process. Moreover, by following a cycle hop between cycles and
using the fact that the payment system is balanced, we can find an edge ez in Gi so that the paths lz → lz+1

in GN,2K and l′z → ez → l′z+1 both end at the same processes. Inductively, P ′ = l′1 → e1 · · · → eZ−1 → l′Z
has at most twice the path length of l1 → · · · → lZ , and P ′ starts at process Pa and ends at process Pb. It
follows by another use of the well balanced condition that Da,b ≤ |P ′|.

We emphasize that the statement of 2 is, in an important measure, weaker than what can actually be achieved.
Given a highly connected graph Gi, the process Pa initiating the payment may have reasonable flexibility in
choosing which participants are required to be honest for the message complexity of the transaction to be
low. In particular, Pa can actively look for processes willing to facilitate the transaction when trying to find
a short path through Gi, rather than being at the mercy of an arbitrary subset of O(logK(N)) participants
to behave honestly.

There are many different choices of cycles one can try to combine to get small graph diameter. Condition
7.1.2 is overly strong because in practice, especially on random graphs, removing a few edges because we
cannot make a cycle jump (say, because V alue(Ck, Pj) = 0 on a cycle Ck) will not significantly affect the
graph diameter. Pa might try a local search along a few different short paths before finding one which works.
To illustrate this idea more concretely, we briefly sketch another construction using two cycles: while we

39Even this extreme case is not entirely unrealistic: we might imagine that the default behavior of participants is to facilitate
payments, at the benefit of gaining transaction fees and reputation for being a reliable facilitator.

44

don’t give any analysis, we leave it to the reader to convince themselves that such a construction allows for
small message complexity when the balance condition is satisfied, and that the construction is reasonably
robust to removing some between-cycle edges.

Construction 4.

1. Start with the standard cycle on N processes, where the edges have the orientation n→ n− 1.

2. Construct a sequence of paths recursively as follows: Start at process 0. Extend a directed edge to the
median m of [0, N]. Now recursively (a): continue extending this path to the median of [m,N], and
(b) start a new path at m− 1, extending it to the median of [0,m− 1], and so on. At the end of this
process, we will have a number of disjoint directed paths. Join them all together to get the second
cycle. The picture looks like this:

0

1

2

3

4

5

6
789

10

11

12

13

14

15

16

17

18

19

20

21
22 23 24

25

26

27

28

Figure 4: Recursively constructed ”binary search” cycles for N = 29.

We end this section with a final comment: One may wonder to what extent 3rd party trust is really necessary
for this construction. For example, if Pc promises Pa it will pay Pb in round i but does not, can we not use a
similar idea like the one in construction 3 (proof of response) to have the network come to a consensus about
whether Pc cheated? The key issue is making sure that if we catch Pc cheating, Pc still has some non-zero
value it can be forced to pay back to compensate Pa. Note that a solution of low best case message complexity
which doesn’t rely on trusted intermediaries doesn’t necessarily violate the message complexity lower bound
of Ω(Nf) for payment systems in the best case (Proposition 6.2.1), because this was proved for the Marker
Problem where the distribution of income is centered only on P1, but our low message constructions rely on
the distribution of income being sufficiently spread out with respect to the network topology. Such an idea

45

may therefore work, but the solution constructed in the fault tolerant model may also make heavy use of
timing assumptions which would not realistically translate to use over the internet. In practice, one would
need to make Pc put money in escrow for a certain amount of time while it was behaving as an intermediary,
and this may require some kind of global consensus to achieve. The idea of using peer to peer payment
indirection, putting money in escrow, and using consensus to resolve peer to peer indirection disputes is very
similar in spirit to the Lightning Network [31]. We find it interesting that by considering a corner case of
Lemma 6.2.1 in an ideal model of payment systems, we have been led down a road which ended with ideas
similar to those being experimented with in real world payment systems. We now turn the reader’s attention
to the appendix, which gives a high level overview of the lightning network and its relation to Part IV.

Trusted Third Parties for Coordinating Payment Cancellation

0

1

2

3
4

5

6

7

8

9
10

Figure 5: The payments P0 → P7 and P6 → P1 can be paired together cancel their common payment path
intersection, reducing the overall message complexity.

In this last subsection, we sketch a simple idea which can also be used to reduce the message complexity
in a third party trusted model. Imagine a case where there is a trusted third party which is responsible for
coordinating information about payments between processes. If the third party is dishonest, the only conse-
quence is that the message complexity per transaction increases (but no security guarantees are violated).
In practice, we imagine a market of such ”information intermediaries” which compete to offer services which
give the best information/reduction in message complexity.

The idea is fairly simple: consider at round i, in the multiple payments per round model, of processes making
Q payments {Pai → Pbi}i∈[Q] on a cycle payment system consisting of a single cycle C. If Pai is much closer

46

to Pbj on C than Pai is to Pbi , and symmetrically, then the central coordinator can pair Pai , Paj together so
that Pai pays Pbj on behalf of Paj and Paj pays Pbi on behalf of Pai under the same trust model of Definition
7.1.1. In general, multiple processes may cooperate together to collectively ”cancel” their payment paths,
and be required to collectively trust each other. In practice, we imagine a system where a central coordinator
will have clients which routinely join and coordinate with other processes in this group. The membership
of a process will be conditional on it never cheating in the group, and the coordinator may offer insurance
against such behavior. Better coordinators will receive more clients, and well-behaved clients will be able to
join coordinators with larger client pools, leading to reduced message complexity per transaction.

How should the coordinator pair multiple transactions together? Given a collection of payers/sources
{Pai}i∈[Q] and recipients/sinks {Pbi}i∈[Q], define the cost of the pairing Pai with Pbj , ci,j to be the length
of the directed cycle on C from Pai to Pbj , which is proportional to the message complexity associated with
such a payment. By repairing difference sources/sinks, we would like to minimize the sums of these costs.
Consider the algorithm GREEDY, which at each iteration i ∈ [Q], picks an arbitrary source/sink, and pairs
it with a sink/source not already paired which has the smallest cost associated with its pairing.

Proposition 7.2.1. GREEDY produces a pairing with minimal total cost.

Proof. Induct on the number of sources Q, with Q = 1 being immediate. Now suppose we have a collection
Q of sources {Pai}i∈[Q] and sinks {Pbi}i∈[Q] which have not already been paired. Let S be a pairing which
minimizes the total cost. Without loss of generality, pick an arbitrary source Pai which is paired to Pbj
in solution S. If Pbj is already a sink which minimizes the path length |PPai

,Pbj
|, we remove the pairing

Pai , Pbj from the source and sink list and are done by induction. Otherwise, there is some sink Pbj′ with
|PPai

,Pb
j′
| < |PPai

,Pbj
|. Let Pai′ be the source connected to Pbj′ in solution S. Construct a new solution S′

which repairs Pai with Pbj′ and Pai′ with Pbj , hence having the property that Pai is paired with a nearest
sink. If we can show S′ does not have greater total cost than S, then we will be done by induction.

Since |PPai
,Pb

j′
| < |PPai

,Pbj
|, it must be that Pbj′ lies on the path PPai

,Pbj
and occurs strictly before Pbj .

Consider three cases: (i), Paj′ lies on the path PPai
,Pbj

and in addition (a) occurs on the path Pa to Pbj′
(S′ has the same cost as S), (b) occurs on the path Pbj′ to Pb (S′ has cost less than or equal to S), (ii) Paj′
does not lie on the path PPai

,Pbj
(S′ has the same cost as S).

(i a)
Pb

Pa

Pb′

Pa′

(i b)
Pb

Pa

Pb′

Pa′

(ii)
Pb

Pa

Pb′Pa′

Figure 6: Cases for GREEDY.

While it is not done so here, it might be interesting to explore simple conditions on the distribution of
payments in the multiple transaction per round model which cause GREEDY to give low cost solutions.

47

Proposition 7.2.2. In the multiple transaction per round, trusted payment intermediary model, there exists
a deterministic payment system tolerating any f < N−1 faults with best case message complexity in round i of
|GREEDY ({Pai}i∈[Q], {Pbi}i∈[Q])|/Q, where {Pai}i∈[Q] are the processes which make payments to {Pbi}i∈[Q]

in round i.

48

Part V

Wrapping Up

Conclusions

This thesis began with the aim of interrogating the following assumption:

Assumption. Distributed payment systems cannot exist without achieving regular global consensus about
which payments have occurred.

By the end of this thesis, we were able to get a clearer idea of the validity of this assumption in the following
ways:

In the formal fault tolerance model, payment systems are weaker than consensus:
We showed in proposition 6.1.1 that there is a single step back box reduction from payment systems to
Byzantine Broadcast, showing that if we can solve the consensus problem, then we can implement a payment
system. On the other hand, by using known lower bound results for Byzantine Broadcast and constructing a
low round complexity solution to the Marker Problem, we were able to show in Theorem 1 that there exists
no black box, or even ”see-through box” reduction from Byzantine Broadcast to payment systems which is
significantly better than trivially using a payment system as an unauthenticated messaging channel.

Under a reasonable trust model, we need not achieve regular global consensus in order to
facilitate payments:
In section 6.2, Construction 2, we showed how to construct simple solutions to the Marker Problem which
did not require global consensus to transact when processors are well behaved. In contrast, we also showed
a tight lower bound of Ω(Nf) for the best case message complexity of the Marker Problem in Proposition
6.2.1, indicating that if we wanted to do much better than Construction 2, we would either need to change
the model of our problem, or make assumptions about the distribution of income. In part IV, we extended
our model to allow trusted intermediaries. We showed that there exist highly fault tolerant payment systems
in this model which facilitate inherently local transactions in the best case. In Theorem 2 we collected these
ideas to show that under certain transaction distribution assumptions, we can tolerate any f < N − 1 faults
with best case message complexity O(logd(N)) per transaction and O(logd(N)) trusted intermediaries per
transaction. Major cryptocurrencies such as Bitcoin do not tolerate more than f faults for 2f < N , and
require achieving consensus at every round about which transactions have occurred (in our model, which
is not the same model as the one a real-world cryptocurrency operates under, this would require sending
Ω(N) messages per transaction in the best case). This result implies that in the model we have chosen, the
assumption that payment systems require regular global consensus about which transactions have occurred
is not necessarily true: at the least, this degree of consensus is not needed in the best case.

Despite these results, it is also important to point out that all of the constructions given were analyzed in
models which are different than the ones in which practical cryptocurrencies operate under (these differences
are detailed in section 4 part II). While we hope the ideas given in these formal models lead to useful
translations in more practical settings, such translations are not always obvious. We state the gaps in this
understanding in the form of posing new problems:

49

Part III

Question 1. Does there exist a reduction from the K round marker problem to the 2 round Marker Problem?
What about the 1 Round Marker Problem? (Definition 5.0.2).

Notice that the heavy requirement that ”all processes behave honestly” in order to get low message complexity
in Construction 2, and hence the construction in Theorem 2, is because the dispute resolution mechanism
which forces processes to extend chains uses Byzantine Broadcast as a black box. If anyone requests the
network to decide on a response for process Pn, then the message complexity is dominated by the number
of messages required to run Byzantine Broadcast. If we could therefore force processes to be responsive
without this consensus mechanism, then we could significantly lower the message complexity even without
best case behavior.

Question 2. Is there a way to force, or strongly incentivize processes to be responsive in Construction 2
without a global consensus mechanism?40

Part IV

Question 3. By using tools for leader election in Randomized Byzantine Agreement, can the ideas presented
in part IV be extended to the realistic case where the N participants are unknown and may be online or
offline?

Question 4. Can we find realistic, more well motivated conditions on the distribution of transactions which
guarantee we can always efficiently find a short payment path in Proposition 7.1.1?

Question 5. Given a transaction distribution, can we always construct a cycle payment system with the
guarantee that there exists (with high probability) a short payment path as in Proposition 7.1.1?

40For example, if there is a financial penalty associated with being unresponsive, then we can have a bound on the message
complexity in terms of how much an adversary needs to spend to increase the number of messages.

50

Appendix

The Lightning Network and Part IV

We will briefly describe the core ideas behind the lightning network, and then move to explaining how Part
IV relates to these ideas.

The lightning network is designed to operate as a second layer protocol, on top of Bitcoin. There does not
yet seem to be any formal analysis of its performance, although there has been some empirical analysis [44],
[45]. The idea is the following: suppose Alice and Bob regularly make small payments to each other. Instead
of making all of these small transactions on the blockchain, Alice can create a payment channel with Bob.
This involves Alice ”paying” 1 Bitcoin into a new payment channel with Bob by putting a transaction on the
blockchain, effectively putting her 1 Bitcoin in escrow. Alice’s payment channel is effectively a local ledger
between Alice and Bob, where Alice has balance 1 and Bob has balance 0. Now when Alice wants to pay Bob
0.5 Bitcoin, she sends it through her payment channel by updating the local ledger. Alice and Bob both sign
the update, and Bob is ”paid” through the payment channel. Alice and Bob now both have 0.5 Bitcoin on
the local payment channel. If Bob wants to now pay Alice, he can send back the 0.5 Bitcoin on the payment
channel by signing an updated copy of the local ledger. All of this happens without communicating to the
blockchain, besides the initial setup of the payment channel. Now, if Bob has 0.5 Bitcoin in the payment
channel with Alice, but would like to pay Charlie with this value, Bob dissolves the payment channel by
publishing it to the blockchain. In particular, Bob publishes the most updated version of the local payment
channel to the Blockchain. There’s a chance Bob can cheat by publishing an outdated version of the payment
channel which doesn’t contain his payment to Alice (the blockchain cannot tell the difference, because the
payment channel only involved communication between Alice and Bob). This problem is solved by putting
a timelock on how quickly Bob can dissolve the channel: when he tries to do this, Alice has a few days
to publish a ”more recent” version of the payment channel to prove Bob is cheating41. If Bob is cheating
and Alice does this, Alice gets all the Bitcoin in the payment channel. Otherwise the payment channel is
dissolved, and Alice’s 1 Bitcoin which she originally deposited in escrow to create the payment channel is
now split between Alice and Bob on the global blockchain, according to the local ledger of the payment
channel.

The reason the lightning network is interesting is the following: again, suppose that Bob wanted to pay
Charlie. There is another way for Bob to do this without dissolving his payment channel with Alice. In
particular, if Alice has a local payment channel with Charlie in which Alice has a positive balance of 0.5
Bitcoin, then Bob can make Alice sign the promise ”If Bob pays me 0.5 Bitcoin in the channel between Alice
and Bob, I’ll pay Charlie 0.5 Bitcoin in the channel between Alice and Charlie”. If this happens, then Bob
pays Alice and Alice pays Charlie, meaning that Bob effectively pays Charlie. None of this required any
messages on the blockchain. The main constraint of this construction is only the capacity of the payment
channels42 (for example, if Alice and Bob’s payment channel started with 1 Bitcoin, Alice can only be an
intermediary for Bob for a value of at most 1 Bitcoin), and the topology of the connections of these channels.
If Alice cheats and does not pay Charlie, then Bob publishes Alice’s promise and proof of her cheating on
the blockchain, and Alice loses the balance in her local payment channel. Of course, this idea of paying
someone through an intermediary can be done inductively: the lightning network imagines that everyone
might form connections and process the majority of small transactions through this network, leaving only
large transactions for the blockchain.

The lightning network’s idea of using payment indirection between 2 party payment channels is very similar
to Part IV’s idea to use payment indirection to hop over long cycles. Note however that the lightning network
and Part IV operate in very different trust and network models:

41Since the more recent version contains Bob’s signature in it, this proves that Bob intentionally published an outdated
ledger.

42This constraint also seems to be a major empirical limitation on the ability of the lightning network to facilitate transactions.

51

1. The lightning network is designed to be practical over the internet: participants might be temporarily
offline43, and there are less strong timing assumptions than in a synchronous network.

2. The lightning network does not trust payment intermediaries (if an intermediary is dishonest, this can
be proved and published to the blockchain), while Part IV is motivated in the context of having many
intermediaries which can be trusted to behave well due to market incentives.

Despite these model differences, we believe there is an intuitive way to view the relation between the con-
structions in Part IV and the lightning network:

1. For each local payment channel of one unit of value between Pn, Pn′ in the lightning network, ”deposit”
this value into a cycle-coin construction where the only two participants in the cycle are Pn, Pn′ . Local
two party payment channels in the lightning network correspond to two-member cycles: if Bob would
like to pay Alice in the two-cycle, he signs the current longest chain, which currently ends at Bob, and
sends it to Alice. Notice that in Construction 2, Alice’s signature is not required to extend the chain
in the special case of a 2-cycle: only the sender needs to sign the chain.

2. Each payment which moves between two payment channels in the lightning network corresponds to a
”cycle hop” between 2-cycles in the network.

3. For Bob to dissolve a local payment channel and redeem a unit of value, he publishes the longest chain
(ending at Bob) currently created by the 2-cycle which proves Bob is the marked process in this cycle.
Alice has finite time to refute this proof by publishing a chain of greater weight.

B

A A

A

D

C C

E

Figure 7: The lightning network as a collection of 2-cycles connected by cycle-hops. The solid arrows
correspond to 2-cycle payment channels, and the dashed lines correspond to cycle hops between 2-cycles.

In general, the lightning network corresponds to the network topology of having a large number of 2-cycles
of Construction 2 connected together by cycle hops. The lightning network chooses to reach consensus on

43But they cannot be offline for too long, because then Alice might not be able to catch Bob cheating in time if he publishes
an outdated copy of the local payment channel to the blockchain.

52

whether participants are honest in these cycle hops, which is why it has stronger security guarantees every
time a payment moves through a cycle hop. We justify this correspondence as follows: notice that two
party payment systems and 2-cycles have the same security guarantees and mechanism of enforcement. Bob
only accepts an updated ledger from Alice if it is an extended ledger from the one they agreed to most
recently. Likewise, when redeeming value, Bob proves that his ledger is the most recent by allowing Alice
the opportunity to present a counter example of a ledger which is longer (more recent) which contains Bob’s
signature, and Alice has a finite time in which to do this. In a 2-cycle of Construction 2, Bob only accepts
payment from Alice if Alice signs a chain with greater weight than any chain Bob has seen before. Likewise,
when redeeming value, Bob can prove that he has the marker in the local payment channel if he publishes a
chain ending at Bob, and Alice cannot produce a greater weight chain. This proof of value is identical to the
”proof of valid response” in Construction 2, where participants prove that a cycle extension request is invalid
by publishing a chain of greater weight. Notice however that in the special case of a 2-cycle construction,
there is never a need to ask another participant to extend a cycle if you are the marked process. Thus
network consensus is only needed when wanting to prove one particular process is marked in the 2-cycle, but
consensus is not needed for in-cycle payments when the marker moves between Alice and Bob, i.e. 2-cycle
payments do not require use of the global blockchain. In both a 2-cycle and a payment channel in the
lightning network, both Alice and Bob only have finite time to broadcast this a proof or counter example to
the network44, so both the lightning network and Construction 2 use a time locking mechanism. The cycle
hops in both systems correspond to using individual participants to act as intermediaries between different
payment channels/2-cycles.

Thus, when we formally studied the constructions in Part IV, we were studying the properties of a structure
which is closely related to that of the lightning network, the primary difference being that we used N -cycles
instead of 2-cycles. We hope that the formalism developed in parts III, IV are therefore useful in setting up
a way to formally understand the security and efficiency of systems like the lightning network.

44For 2-cycles, these need to be broadcast within the current round.

53

References

[1] Marshall C. Pease, Robert E. Shostak, Leslie Lamport: Reaching Agreement in the Presence of Faults.
J. ACM 27(2): 228-234 (1980)

[2] Leslie Lamport, Robert E. Shostak, Marshall C. Pease: The Byzantine Generals Problem. ACM Trans.
Program. Lang. Syst. 4(3): 382-401 (1982)

[3] Michael J. Fischer, Nancy A. Lynch: A Lower Bound for the Time to Assure Interactive Consistency.
Inf. Process. Lett. 14(4): 183-186 (1982)

[4] Danny Dolev, Michael J. Fischer, Robert J. Fowler, Nancy A. Lynch, H. Raymond Strong: An Efficient
Algorithm for Byzantine Agreement without Authentication. Information and Control 52(3): 257-274
(1982)

[5] Bollobás, B., Fernandez de la Vega, W. Combinatorica (1982) 2: 125. https://doi.org/10.1007/

BF02579310

[6] Danny Dolev, H. Raymond Strong: Authenticated Algorithms for Byzantine Agreement. SIAM J. Com-
put. 12(4): 656-666 (1983)

[7] Michael Ben-Or: Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols
(Extended Abstract). PODC 1983: 27-30

[8] Michael O. Rabin: Randomized Byzantine Generals. FOCS 1983: 403-409

[9] Russell Turpin, Brian A. Coan: Extending Binary Byzantine Agreement to Multivalued Byzantine
Agreement. Inf. Process. Lett. 18(2): 73-76 (1984)

[10] Michael J. Fischer, Nancy A. Lynch, Mike Paterson: Impossibility of Distributed Consensus with One
Faulty Process. J. ACM 32(2): 374-382 (1985)

[11] Danny Dolev, Rüdiger Reischuk: Bounds on Information Exchange for Byzantine Agreement. J. ACM
32(1): 191-204 (1985)

[12] Michael J. Fischer, Nancy A. Lynch, Michael Merritt: Easy Impossibility Proofs for Distributed Con-
sensus Problems. Distributed Computing 1(1): 26-39 (1986)

[13] Cynthia Dwork, Nancy A. Lynch, Larry J. Stockmeyer: Consensus in the presence of partial synchrony.
J. ACM 35(2): 288-323 (1988)

[14] David Chaum, Amos Fiat, Moni Naor: Untraceable Electronic Cash. CRYPTO 1988: 319-327

[15] Benny Chor, Michael Merritt, David B. Shmoys: Simple constant-time consensus protocols in realistic
failure models. J. ACM 36(3): 591-614 (1989)

[16] Jeong Han Kim, Nicholas C. Wormald, Random Matchings Which Induce Hamilton Cycles and Hamil-
tonian Decompositions of Random Regular Graphs, Journal of Combinatorial Theory, Series B, Volume
81, Issue 1, January 2001, Pages 20-44

[17] Xavier Défago, André Schiper, Péter Urbán: Total order broadcast and multicast algorithms: Taxonomy
and survey. ACM Comput. Surv. 36(4): 372-421 (2004)

[18] Yehuda Lindell, Anna Lysyanskaya, Tal Rabin: On the composition of authenticated Byzantine Agree-
ment. J. ACM 53(6): 881-917 (2006)

[19] Roberto Baldoni, Marin Bertier, Michel Raynal, Sara Tucci Piergiovanni: Looking for a Definition of
Dynamic Distributed Systems. PaCT 2007: 1-14

54

[20] Jonathan Katz, Chiu-Yuen Koo: On expected constant-round protocols for Byzantine agreement. J.
Comput. Syst. Sci. 75(2): 91-112 (2009)

[21] Bitcoin: A Peer-to-Peer Electronic Cash System. 2009.

[22] Hagit Attiya, Keren Censor-Hillel: Lower Bounds for Randomized Consensus under a Weak Adversary.
SIAM J. Comput. 39(8): 3885-3904 (2010)

[23] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars
Virza: Zerocash: Decentralized Anonymous Payments from Bitcoin. IEEE Symposium on Security and
Privacy 2014: 459-474

[24] Juan A. Garay, Aggelos Kiayias, Nikos Leonardos: The Bitcoin Backbone Protocol: Analysis and
Applications. EUROCRYPT (2) 2015: 281-310

[25] Yoad Lewenberg, Yoram Bachrach, Yonatan Sompolinsky, Aviv Zohar, Jeffrey S. Rosenschein: Bitcoin
Mining Pools: A Cooperative Game Theoretic Analysis. AAMAS 2015: 919-927

[26] Loi Luu, Jason Teutsch, Raghav Kulkarni, Prateek Saxena: Demystifying Incentives in the Consensus
Computer. ACM Conference on Computer and Communications Security 2015: 706-719

[27] Ittay Eyal: The Miner’s Dilemma. IEEE Symposium on Security and Privacy 2015: 89-103

[28] Okke Schrijvers, Joseph Bonneau, Dan Boneh, Tim Roughgarden: Incentive Compatibility of Bitcoin
Mining Pool Reward Functions. Financial Cryptography 2016: 477-498

[29] Ayelet Sapirshtein, Yonatan Sompolinsky, Aviv Zohar: Optimal Selfish Mining Strategies in Bitcoin.
Financial Cryptography 2016: 515-532

[30] Kartik Nayak, Srijan Kumar, Andrew Miller, Elaine Shi: Stubborn Mining: Generalizing Selfish Mining
and Combining with an Eclipse Attack. EuroS&P 2016: 305-320

[31] Joseph Poon, Thaddeus Dryja. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments.
2016.

[32] Miles Carlsten, Harry A. Kalodner, S. Matthew Weinberg, Arvind Narayanan: On the Instability of
Bitcoin Without the Block Reward. ACM Conference on Computer and Communications Security 2016:
154-167

[33] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, Yiannis Tselekounis: Blockchain Mining Games.
EC 2016: 365-382

[34] Rafael Pass, Elaine Shi: The Sleepy Model of Consensus. ASIACRYPT (2) 2017: 380-409

[35] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, Huaimin Wang: An Overview of Blockchain
Technology: Architecture, Consensus, and Future Trends. BigData Congress 2017: 557-564

[36] Micali, S. (2017, July 25). Dr. Silvio Micali, MIT, DLS [Video file]. Retrieved from https://youtu.be/

QNQHbfI3IAQ

[37] How Lightning Network Scales For The World - Lightning Network Explained (2018, December 28).
Roger Ver [Video file]. Retrieved from https://www.youtube.com/watch?v=Xg_-dz5PqAY

[38] Ittay Eyal, Emin Gün Sirer: Majority is not enough: bitcoin mining is vulnerable. Commun. ACM
61(7): 95-102 (2018)

[39] Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Alexei Zamyatin, Edgar R. Weippl: Agreement
with Satoshi - On the Formalization of Nakamoto Consensus. IACR Cryptology ePrint Archive 2018:
400 (2018)

55

[40] Silvio Micali Byzantine Agreement, Made Trivial, 2018

[41] Serguei Popov, The Tangle, 2018

[42] Jing Chen, Sergey Gorbunov, Silvio Micali, Georgios Vlachos (2018) ALGORAND AGREEMENT:
Super Fast and Partition Resilient Byzantine Agreement

[43] Itay Tsabary, Ittay Eyal: The Gap Game. ACM Conference on Computer and Communications Security
2018: 713-728

[44] István András Seres, László Gulyás, Dániel A. Nagy, Péter Burcsi: Topological Analysis of Bitcoin’s
Lightning Network. CoRR abs/1901.04972 (2019)

[45] Stefano Martinazzi: The evolution of Lightning Network’s Topology during its first year and the influence
over its core values. CoRR abs/1902.07307 (2019)

[46] coinmarketcap.com, a database for cryptocurrency statistics. Last accessed March 2019.

56

