1 (Notes from the ITCSC Summer research program in Hong Kong)

1.1 Problem Statement and Definition

Suppose someone gives you a source X € {0,1}" of n unbiased iid coin flips. Imagine we want to somehow process X and
stretch it out to give a new bitstream Y € {0,1}", ', where each bit of Y is approximately an iid coin flip with bias Z. This is
easy to do when n’ : for each of the n/2 consecutlve blocks of X bit pairs x;x;41, output x; A z;41. However we want
n' to be close to the mformatlon theoretic limit, say n’ ~ n/H(3) (where H is the binary entropy function).

What we want to do is find a map to compute Y := f(X) which reshapes the distribution of X into the target distribution of
Y. We know how to do this with methods like arithmetic coding, computing the inverse Cumulative Distribution Function,
and other compression/decompression methods (there’s a nice construction using the leftover hash lemma), but all these
methods are "non-local”: ideally, to compute a bit Y;, we should only need to look at b bits of X. It’s possible to come up
with such a construction using block decompression techniques for b = log(n)?; a more interesting question to ask is whether
we can get b = O(1). If we're trying to look for a b local f to solve this problem, then one line of inquiry is to study how
the entropy of f(X) is distributed between the bits of f(X) given that f is b-local. If the entropy of Y = f(X) is always
concentrated on a small fraction of bits when f is O(1) local, then we know that such a construction is impossible.

Definition 1. Let S = {s; < s9 < ... < s;} C [n], and X = xg..xp_1 a variable taking values in {0,1}". We write
Xg 1= x4, ...z, to denote the variable X whose bits are restricted to the set S.

Definition 2. We say a function f : {0,1}" — {0,1}" is b-local if for each index i € [n'], the ith bit f(X); can be written
as a function of at most b bits of X. In particular, Vi € [n'], 3S; C [n] with |S| = b and a function f; : {0,1}> — {0,1} such

Question: Let X ~ {0,1}" be a uniformally drawn random variable, and let H return the entropy of a random variable.
For any constants b € N, e > 0, given a b-local function f : {0,1}" — {0,1}", does there always exist a subset S C [n’] with
|S| = O(n) such that H(f(X)|s) > (1 —€)H(f(X))? Here we think of n’ >> n, say n’ = 0(n?) (if n’ = O(n) the question
is trivial). Stated informally, given a b-local function f which stretches out an iid bit source, is most of the entropy of f(X)
concentrated on only a small fraction of its bits, or can the entropy also be "spread out” between all of its bits?

1.2 Solution of the problem for b=2

Lemma 3. Let Y1, ..., Yx, }711..., Y. be random variables. Suppose that Vi € [k], H(YZD;;) <eH(Y)).
Then H(Y1, ..., YY1, ..., Yy) < keH (Y3, ..., Y})

Proof.
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Remark 4. Note that in the proof, we actually have H (Y1, LYY Y < K*eH(YA, .., Y), where k* is k minus the
number of times the relation H(Y;|Y;) = 0 holds.

Theorem 5. Let X be uniform over {0,1}", and let Y € {0, 1}”/ be a function of X such that each bit Y; depends on at
most b =2 bits of X. Then there exists a set S C [n'] with |S| < Cen such that H(Y|s) > (1 —e)H(Y).



Proof intuition The intuition for the proof is as follows: note that each bit Y; is a potentially different function
fi : {0,1}* — {0,1} of some subset of the bits of X. We can use the previous lemma to partition the bits of Y into groups
depending on which of the (at most) 22" functions they are associated with. If we can solve the problem assuming the bits of Y
are all computed by the same local function, we can use the previous lemma to stitch our solutions for each partition together
and only pay a constant factor in entropy loss. It turns out that the only tricky subproblem to consider is f(z;, x;) = x; Az;.
The intuition for this problem is as follows: if there are a constant number 1, ...,y. of Y bits which depend on z;, then we
can capture most of the entropy of x; by looking at these Y bits: if x; = 0, then all of y1, ..., y. will be 0. If x; = 1, then we
expect at least one of yi,....,y. to be 1 with overwhelming probability. If ; has fewer than ¢ Y bits which depend on it, we
can afford to simply include all the Y bits which depend on z; into our set S, and we capture ”all of the information of x;”
which is contained in Y. We can use this observation to take at most a constant number of Y bit "samples” for each X bit
x;; afterwards, we should have captured most of the entropy Y. The following proof makes these ideas formal:

Proof. First, consider the case where each bit of Y is a single fixed function f of pairs of bits of X. The claim is easily seen
to be true when f is constant, linear, or the identity (modulo negation) in one of its arguments (in each case, we need at
most n elements to capture exactly all of the entropy of Y by using guassian elimination).

The only remaining case to consider (up to negations) is when each bit of Y is an AND of bits of X, i.e. f(z;,z;) = z;Ax;.
Construct a graph G with n vertices, where we have an edge (a,b) € E[G] if 3i € [n/] s.t. YV; = X, A X, Associate with each
vertex a in G with its corresponding bit X,, and each edge (a,b) of G with its corresponding bit ¥; = X, A Xp.

Now iteratively do the following: start with an empty set E;. While there exists a vertex v with 0 < deg(v) < C, add the
edges incident v to E; and remove these edges from F[G]. Let Ej, be the remaining edges after this process terminates, and
let V3, be the vertices incident to E},. Then we have |E;| < C(n — |V}|) and that every vertex v € V}, has at least C vertices
in Ep. For each v € V},, arbitrarily pick C' edges in E; which are adjacent to v, and add them to a new set E,. First, we
claim H(V,|Ey) < [Vi|(C 4 2)2-¢~1. This follows since
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Where for each v € V;, we denote E, C Eh to be a set of C vertices adjacent to v. Note that (10) vanishes because
PrlE, =y # 0Av=0] =0. Now, we have

H(Ep) > (1—(C+2)279 Y1 (16)



And hence

H(Ew|En) = H(Ep) — H(Ep) (18)
< H(Ep) —(1—(C+2)27 1)IVnI (19)

< H(Ep) —(1-(C+2)2"“"YH(E,) (20)
=(C+2)2°°"'H(E,) (21)

(22)

The first equality follows from the fact that Ej, is a function of Vj, so H(Ey) = H(Vy,) — H(V4|Ey), and H(V3,) = Vi
The second equality follows because Fj, is a function of Ej, and the third inequality follows because FE,, is a function of V,.

Lastly, note that |Ey| + |E| < C|Vi| + C(n — |Vi|) = Cn and

H(Y|Ey, Bi) = H(Ep, E/|Ey, Ey) (23)
<(C+2)27“TH(E,, E) = (C+2)27“"TH(Y) (24)

by lemma 3 and remark 4, so

H(Ey, Ey) = H(Y) = H(Y|Ey, Ey) (25)
>(1—(C+2)27“"HH(Y) (26)

and we can set S = Eh U E; for the AND case.

Finally, consider the full problem. We apply lemma 3, and partition the bits of Y into sets Wi, ..., W, so that each set
W; only contains bits which are a single fixed function f; of pairs of X. Now we construct approximation sets .S; for each of
the sets W; as before. Notice that we have k* = 8 in remark 2 (we only lose entropy on the functions which are ANDs modulo
negation). Thus there exists a set S of size at most 8Cn + 8n < 8(C + 1)n such that H(Y|s/) > (1 —8(C +2)2= " H(Y).
Setting C, Ce = max(O(log(1)), 4) gives us what we want.

O

1.3 Greedy is optimal, and a combinatorial interpretation

Theorem 6. (Greedy is optimal up to factors in €): Suppose there exists a set S = {Si,...,Sm} such that H(Y|s) >
(1—eH(Y). Let 8" ={S],..., S} be the set chosen as follows: at step i, find the index j such that H(Y;|Ys;,...,Ys/ ) is
mazimal, and add j to S'. Terminate when H(Y |s/) > (1 —€)(1 — € )H(Y). Then we have k = O (mlog (%)).

Proof. We claim that at step ¢, we have
(1 — €)H(Y) — H(Ys/ 5 ...,Ys( )

max H (Y;|Ys;, ..., Vs, ) > ! s (27)
j 1—1 m

Suppose this did not hold. Then in particular we have

H(Ysy, o Ys,) < H(Ysy, o, Yo, [V, oo Yo )+ H(Yer, o, Yoo ) (28)
< H(YSJYS{,-",YSLI) +H(YS@~-~7YS;71) (29)
1€[m]
< (1 — G)H(Y) — H(YS{7--'7YS;_1) + H(Ysﬁ, . Ysg_l) (30)
=(1—-eH(Y) (31)

which gives a contradiction. Now we have

H(YS{7"'7YS£) = H(YS,Z‘YSb "'7YS£71) + H(Ysi7 "'7YS,£71) (32)
1—-e)H(Y 1
> M + (1 - ) H(Ysiv "'aYS'.il) (33)
m m °
(34)



Solving f(i) = £ + (1 — L) f(i — 1) and f(0) = 0 gives f(k) = a(1 — (1 — L)), so we have

H(Yeg, s Yy) = (1= (1= (1 - —))H(Y) (35)

m

picking k = O (mlog (%)) ensures that the LHS is > (1 —€)(1 — €' )H(Y)
O

Corollary 7. For any ¢ > 0, there exists a set S of size O (C(€)n) such that H(Y |s) > (1 — e)H(Y) iff for any € > 0 there
exists a greedy set S” of size O (C'(€)n) such that H(Y|s/) > (1 —e)H(Y)

Definition 8. Let a weighted vertex graph S be a set of pairs (p;,S;), where p; € [0,1],5; C {0,1}". We view each p; as a
weight for the subset of vertices S;. At all times we have ), p; =1 and that {S;}; forms a partition of {0,1}".

Definition 9. Given a conditioning set R; C {0,1}", where R; := {z € {0,1}"|Y;(z) = 1}, we define the weighted vertex
graph S — R; conditioned on R; as follows: for each (p;,S;) € S, let S; o = S; N RS, pio = pilfgﬁl and S;1 = S; N R;,

[Sinl

Pi = Pi[ET - Now replace each (p;, S;) by the sets (pio,Si0), (Pia,Si1) to form S — R;.

Remark 10. Let S = A := {(1,{0,1}")}. Then we can view the distribution X|Y;,,...,Y;, as being “represented” by the
weighted vertex graph S — R;, — ... — R;,. Indeed, for each distribution X|Yi, = vyi,, ..., Yi, = Vi,, there exists an element
(p;,S;) € S such that p; = P(Y;, = yiy,.... Vi, = vi,.) and S; = {z € {0,1}"|Y;, (x) = ¥iy, ..., Vi () = yir }. We can draw a
sample from the distribution of X by picking a set S; with probability p;, and then drawing uniformally from S;.

1k

Lemma 11. Let S = {(pi, Si)}i = A — Ry, — ... = Ry,. Then H(X|Y;,...,Ys,) = >, pilog(|Si|) and H(Y;, ,|Yi,, ... Ys,) =
2P [‘fs”fl log (IS‘TLI;”L“T“l) + ‘\Séj‘ log (‘Si'ﬂ@jllélwi‘ll )} . In particular, the remaining entropy H(XY;,,...,Y;.) is the weighted
average of the logarithm of the size of each group.
Proof.
H(X‘Yilv“'ink) = Z P(Yi1 = Yigs s Yig :yik)x (36)
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Remark 12. Suppose each Y; depends on at most b bits. Then each R; is of the form {s...x iy % ... % G5, * ... o % G % ...x ],
i.e. the set of all n bit strings where each x varies over {0,1}, and (i1, ..., i) takes values in a set F' C {0,1}°. In particular,
if Y; is not constant, then 2"7° < |Ry|,|RS| < 2™ — 270,

Moreover, we know from a previous lemma that we can assume all the Y;’s consist of the same function f on b bits of X.
In this particular case, the forms of the R;’s are even simpler: for each i,j, there exists a function o;; : {0,1}" — {0,1}"
which permutes at most b bit positions, such that x € R; iff o, j(x) € R;.



Corollary 13. Suppose we have random variables Y7, ..., Y, with corresponding conditioning sets Ry, ..., Ry,, where each Y;
is a function of X. Then the condition that H(Y;,,...,Y:,) > (1 —e)H(Y1,...,Yy,) is equivalent to

Zp log(|S}]) < en+ (1 —¢) Zpl log(|S;]) (45)
where S = {(p?,8:)}i =A — Ry — ... = Ry, and 8" = {(p5',S)}i = A — Ri, — ... — R,

Proof. Write Y := (Y1,...,Y,), Y := (Y, ...,Y;.). Then we have the following sequence of equivalent conditions

> p log(IS]) < en+ (1—€) Y pf log(|Si]) (46)
H(X|Y)<eH(X)+(1—-eH(X|Y) (lemma 11) (47)

H(X|Y) - H(X|Y) < e[H(X) - H(X|Y)] (48)
(H(X)—H(Y)) = (H(X) - H(Y)) < e[H(X) - (H(X) = H(Y))] (49)
H(Y)-HY)<eH(Y) (50)

H(Y) > (1-eH(Y) (51)

O

Remark 14. The previous corollary shows that we can think of Y = (Y;,, ... Y5, ) as being a “covering” of Y = (Y17 5 Ya)
which achieves a score Y, p; log(|Si|) (which we are trying to minimize). Likewise, Y achieves a score of 3, p; 2 log(|Si]).
If the score of Y is close enough to the score of Y, then we know H(Y) > (1 — €)H(Y).

Task: show that greedy always gives an eH (Y') approximation of H(Y") (using corollary 13) with a C’(¢)n sized covering, or
give a counter example. Take note of remark 12: we can assume that each bit Y; is a fixed function f of some b bits of X,
and so the sets {R;} have a particularly simple form. My intuition is that we want to use the fact that the size of each R; is
large, and only ”fixes” a finite number of coordinates. We then probably want to make some kind of ”we can always decrease
the entropy H(Y'|Y;,, ..., Y;,) by a constant factor” argument, similar to the proof in theorem 6. We know by corollary 7 and
theorem 5 that this claim holds when b = 2. My intuition is that a proof for greedy using the vertex covering language will
not use the fact that b = 2, and so will hopefully generalize to b = O(1).

2 Converting bit sources locally

This is a more direct way of approaching the motivating problem in section 1.1: how does one locally convert an iid unbiased
bit source X into a source of n’ bits Y, where Y is statistically close to a collection of iid coin flips with bias say %, and n’
is close to the optimal n/H(}) in expectation.

Lemma 15. There exists an algorithm E which takes in bH(p) + 1 (in expectation) unbiased bits at a time, and returns b
bits. Moreover, KL(D(E), Bern(b,p)) < 1, where Bern(b,p) are b i.i.d. Bernoulli random variables with bias p, and D(E)
is the distribution of an output block of E.

Proof. Let ¢z = Px~Bern(bp)|X = x]. For each z € {0,1}°, let I, = [—logy(q.)]. The lengths {i,}, satisfy the kraft
inequality, so there exists a prefix code with these lengths where each codeword ¢, of length [, maps to z via F(c,) = x. Let
pz = 27! be the probability of drawing codeword c,. We have

KL(D(E), Bern(b,p)) sz log (]%;) (52)
= pr [log (p.) — log (¢z)] (53)

= _ o [[log (2:)] —log ()] (54)
<1 (55)

A similar calculation shows that E[codeword length] = 3" p,l, = > 27~ 10g2(a=)I[]og ( )1 <H(q)+1=0bH(p)+1.



Remark 16. The +1 bound in the KL divergence might be overly pessimistic: this really depends on how tightly we can
partition subsets of {0,1}™ such that the subsets of the partition are close to (negative) powers of 2 in probability. It might
be worth exploring explicit examples to see how tight we can get this (I think looking at things this low-level could also lead to
bounds in statistical difference).

Remark 17. Another thing to try (instead of trying to make optimal symbol codes directly) is to consider a kind of truncated

geometric distribution, i.e. Plx = 0...01] (%mmbw of Zemesi when the number of zeroes is less than say O(log(n)),

1
otherwise x will simply be O(log(n)) zeroes. Then we can think of generating our sequence of biased coins by continually
drawing i.i.d. wvalues for x and concatenating them together. I'm not really sure whether this has any advantages over the

previous approach, but it might allow us to partition the x’s in a way which is more easy to analyze/break into powers of two.

2.1 12 entropy bound using fourier analysis

Here, we wanted to try and see whether specific construction would work as a candidate for converting an iid bit source X
into a bit source Y.

The construction is as follows: for each ¢ € [n'], randomly pick indices G(i,1), G(4,2), G(¢,3),G(i,4),G(4,5), G(%,6) € [n] and
then set Y; := (zg@i1) +Taa,2) + 2a6,3) (Tai,4) + Tai,5) T Tag,e)). This gives the right expectation: Y; is 1 with probability
i. The hope was because this has a kind of ”expander graph” like property, the bits would also be reasonably independent.
The strategy for determining whether this would work is to try and upper bound the /1 norm of Y and the target distribution
by the {2 norm. The I2 norm is easier to analyze with fourier analysis tricks. We were (unfortunately) able to show that this
analysis approach doesn’t work.

Let p be the i biased distribution on m bits, and vg the distribution we construct from a graph G. To draw y;, we first
draw z ~ {0,1}". We then let y; = (vg@1) + Taa,2) + 26a,3)(Ta@,4) + Tai,s) + Tai,e)) If we fix 2 and choose G(i, 5)
uniformally at random, then each zg(; ;) are iid bernoulli random variables with mean equal to the mean number of 1’s in

the fixed z. We have

> (Po(y) = Pu())? = 2" Eyfony=[(Pu(y) = Pu(y)?] (56)
ye{0,1}™

=2™ 3" [(Pu(S) — Pu(S))? (57)

ScC[m]
=27 Y [(Byeqoayn [(—1) €5 ¥ Py(y)] — Byegoaym [(—1) €5 ¥ Py (y)])?] (58)

ScCm]
=2 ) (@ Eya[(-1)Zies V] = 27 B, [(—1) Zies ¥i))?) (59)

ScCm]
=27 3 (B oy ()T )] = By [(-)Zres )] (60)

ScCm]
Fix an S C [m]. We have that
15|

Eyfvu[(_l)ziesyi} = (;) (61)

And

Fo [(Bemtor (1550 = By (-1 T )2 = B [Bym oy (1) Bres v

= 2B6 [Banouy (-1 Fres %] (;)'5' ¥ (;)w (62



B Epmto iy [(~1) Zees )] = By o130 Eol(~1)Fres 7]
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a=0

= ZP[x has a 1’s|Eg[(—1)¥*) |z has a 1s]'°!
a=0

=2 (1) ()”

a=0

where 7(p) := 1 — 18p? + 72p> — 120p* + 96p° — 32p°, or equivalently T(% +d) =1/2 —8d® — 32d°.

Quick aside
Using E[z?] > E[z]?, we get that

So that

Ec Y, (P(y)—Pu(y)?=2"" Scz[;n] [2,12”: (Z)T (%)IS‘ ) (i)mr
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This is a lower bound on the ls norm squared. If we assumed this bound were tight (the optimistic case), the upper bound

on the [ norm we would get is

m —-m - m
om/2 |9 Z<k>
k=0

-15(0)]

k=0

B n
27"y
L a=0

2y

a=0

(;
(;

)l
)l

a

n

a

n

)
)

1

2

1

2

).
;

N|=

N

(71)

(72)

Here are some plots of this bound for different relations between n and m, which show that this bound diverges for the

parameter ranges we care about.
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Figure 1: Plot of bound for m =n
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Figure 2: Plot of bound for m = n/2
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Figure 3: Plot of bound for m =n/10



