
1 (Notes from the ITCSC Summer research program in Hong Kong)

1.1 Problem Statement and Definition

Suppose someone gives you a source X ∈ {0, 1}n of n unbiased iid coin flips. Imagine we want to somehow process X and
stretch it out to give a new bitstream Y ∈ {0, 1}n′ , where each bit of Y is approximately an iid coin flip with bias 1

4 . This is
easy to do when n′ = n

2 : for each of the n/2 consecutive blocks of X bit pairs xixi+1, output xi ∧ xi+1. However, we want
n′ to be close to the information theoretic limit, say n′ ≈ n/H( 1

4 ) (where H is the binary entropy function).

What we want to do is find a map to compute Y := f(X) which reshapes the distribution of X into the target distribution of
Y . We know how to do this with methods like arithmetic coding, computing the inverse Cumulative Distribution Function,
and other compression/decompression methods (there’s a nice construction using the leftover hash lemma), but all these
methods are ”non-local”: ideally, to compute a bit Yi, we should only need to look at b bits of X. It’s possible to come up
with such a construction using block decompression techniques for b = log(n)2; a more interesting question to ask is whether
we can get b = O(1). If we’re trying to look for a b local f to solve this problem, then one line of inquiry is to study how
the entropy of f(X) is distributed between the bits of f(X) given that f is b-local. If the entropy of Y = f(X) is always
concentrated on a small fraction of bits when f is O(1) local, then we know that such a construction is impossible.

Definition 1. Let S = {s1 < s2 < ... < sk} ⊂ [n], and X = x0...xn−1 a variable taking values in {0, 1}n. We write
XS := xs1 ...xsk to denote the variable X whose bits are restricted to the set S.

Definition 2. We say a function f : {0, 1}n → {0, 1}n′ is b-local if for each index i ∈ [n′], the ith bit f(X)i can be written
as a function of at most b bits of X. In particular, ∀i ∈ [n′], ∃Si ⊂ [n] with |S| = b and a function fi : {0, 1}b → {0, 1} such
that f(X)i = fi(XSi).

Question: Let X ∼ {0, 1}n be a uniformally drawn random variable, and let H return the entropy of a random variable.
For any constants b ∈ N, ε > 0, given a b-local function f : {0, 1}n → {0, 1}n′ , does there always exist a subset S ⊂ [n′] with
|S| = O(n) such that H(f(X)|S) ≥ (1 − ε)H(f(X))? Here we think of n′ >> n, say n′ = θ(n2) (if n′ = O(n) the question
is trivial). Stated informally, given a b-local function f which stretches out an iid bit source, is most of the entropy of f(X)
concentrated on only a small fraction of its bits, or can the entropy also be ”spread out” between all of its bits?

1.2 Solution of the problem for b=2

Lemma 3. Let Y1, ..., Yk, Ỹ1, ..., Ỹk be random variables. Suppose that ∀i ∈ [k], H(Yi|Ỹi) ≤ εH(Yi).
Then H(Y1, ..., Yk|Ỹ1, ..., Ỹk) ≤ kεH(Y1, ..., Yk)

Proof.

H(Y1, ..., Yk|Ỹ1, ..., Ỹk) ≤
∑
i∈[k]

H(Yi|Ỹ1, ..., Ỹk) (1)

≤
∑
i∈[k]

H(Yi|Ỹi) (2)

≤ ε
∑
i∈[k]

H(Yi) (3)

≤ kεH(Y1, ..., Yk) (4)

Remark 4. Note that in the proof, we actually have H(Y1, ..., Yk|Ỹ1, ..., Ỹk) ≤ k∗εH(Y1, ..., Yk), where k∗ is k minus the
number of times the relation H(Yi|Ỹi) = 0 holds.

Theorem 5. Let X be uniform over {0, 1}n, and let Y ∈ {0, 1}n′ be a function of X such that each bit Yi depends on at
most b = 2 bits of X. Then there exists a set S ⊂ [n′] with |S| ≤ Cεn such that H(Y |S) ≥ (1− ε)H(Y ).

1



Proof intuition The intuition for the proof is as follows: note that each bit Yi is a potentially different function
fi : {0, 1}b → {0, 1} of some subset of the bits of X. We can use the previous lemma to partition the bits of Y into groups

depending on which of the (at most) 22
b

functions they are associated with. If we can solve the problem assuming the bits of Y
are all computed by the same local function, we can use the previous lemma to stitch our solutions for each partition together
and only pay a constant factor in entropy loss. It turns out that the only tricky subproblem to consider is f(xi, xj) = xi∧xj .
The intuition for this problem is as follows: if there are a constant number y1, ..., yc of Y bits which depend on xi, then we
can capture most of the entropy of xi by looking at these Y bits: if xi = 0, then all of y1, ..., yc will be 0. If xi = 1, then we
expect at least one of y1, ...., yc to be 1 with overwhelming probability. If xi has fewer than c Y bits which depend on it, we
can afford to simply include all the Y bits which depend on xi into our set S, and we capture ”all of the information of xi”
which is contained in Y . We can use this observation to take at most a constant number of Y bit ”samples” for each X bit
xi; afterwards, we should have captured most of the entropy Y . The following proof makes these ideas formal:

Proof. First, consider the case where each bit of Y is a single fixed function f of pairs of bits of X. The claim is easily seen
to be true when f is constant, linear, or the identity (modulo negation) in one of its arguments (in each case, we need at
most n elements to capture exactly all of the entropy of Y by using guassian elimination).

The only remaining case to consider (up to negations) is when each bit of Y is an AND of bits of X, i.e. f(xi, xj) = xi∧xj .
Construct a graph G with n vertices, where we have an edge (a, b) ∈ E[G] if ∃i ∈ [n′] s.t. Yi = Xa ∧Xb. Associate with each
vertex a in G with its corresponding bit Xa, and each edge (a, b) of G with its corresponding bit Yi = Xa ∧Xb.

Now iteratively do the following: start with an empty set El. While there exists a vertex v with 0 < deg(v) < C, add the
edges incident v to El and remove these edges from E[G]. Let Eh be the remaining edges after this process terminates, and
let Vh be the vertices incident to Eh. Then we have |El| ≤ C(n− |Vh|) and that every vertex v ∈ Vh has at least C vertices
in Eh. For each v ∈ Vh, arbitrarily pick C edges in Eh which are adjacent to v, and add them to a new set Ẽh. First, we
claim H(Vh|Ẽh) ≤ |Vh|(C + 2)2−C−1. This follows since

H(Vh|Ẽh) ≤
∑
v∈Vh

H(v|Ẽh) (5)

≤
∑
v∈Vh

H(v|Ev) (6)

=
∑
v∈Vh

∑
x∈{0,1},y∈{0,1}C

Pr[v = x,Ev = y] log

(
Pr[Ev = y]

Pr[v = x ∧ Ev = y]

)
(7)

=
∑
v∈Vh

∑
y∈{0,1}C

Pr[v = 1, Ev = y] log

(
Pr[Ev = y]

Pr[v = 1 ∧ Ev = y]

)
(8)

+
∑
v∈Vh

Pr[v = 0, Ev = 0] log

(
Pr[Ev = 0]

Pr[v = 0 ∧ Ev = 0]

)
(9)

=
∑
v∈Vh

 ∑
y∈{0,1}C ,y 6=~0

Pr[v = 1, Ev = y] log

(
Pr[Ev = y ∧ v = 1] + Pr[Ev = y ∧ v = 0]

Pr[v = 1, Ev = y]

) (10)

+
∑
v∈Vh

[
2−C−1 log

(
2C+1Pr[Ev = 0]

)
+

1

2
log

(
2(

1

2
+ 2−C−1)

)]
(11)

=
∑
v∈Vh

[
2−C−1 log

(
2C+1(

1

2
+ 2−C−1)

)
+

1

2
log

(
2(

1

2
+ 2−C−1)

)]
(12)

≤
∑
v∈Vh

(C + 1)2−C−1 + 2−C−1 (13)

= |Vh|(C + 2)2−C−1 (14)

(15)

Where for each v ∈ Vh we denote Ev ⊂ Ẽh to be a set of C vertices adjacent to v. Note that (10) vanishes because
Pr[Ev = y 6= 0 ∧ v = 0] = 0. Now, we have

H(Ẽh) ≥ (1− (C + 2)2−C−1)|Vh| (16)

(17)

2



And hence

H(Eh|Ẽh) = H(Eh)−H(Ẽh) (18)

≤ H(Eh)− (1− (C + 2)2−C−1)|Vn| (19)

≤ H(Eh)− (1− (C + 2)2−C−1)H(En) (20)

= (C + 2)2−C−1H(En) (21)

(22)

The first equality follows from the fact that Ẽh is a function of Vh so H(Ẽh) = H(Vh) −H(Vh|Ẽh), and H(Vh) = |Vh|.
The second equality follows because Ẽh is a function of Eh, and the third inequality follows because En is a function of Vn.

Lastly, note that |Ẽh|+ |El| ≤ C|Vh|+ C(n− |Vh|) = Cn and

H(Y |Ẽh, El) = H(Eh, El|Ẽh, El) (23)

≤ (C + 2)2−C−1H(Eh, El) = (C + 2)2−C−1H(Y ) (24)

by lemma 3 and remark 4, so

H(Ẽh, El) = H(Y )−H(Y |Ẽh, El) (25)

≥ (1− (C + 2)2−C−1)H(Y ) (26)

and we can set S = Ẽh ∪ El for the AND case.

Finally, consider the full problem. We apply lemma 3, and partition the bits of Y into sets W1, ...,W22b
so that each set

Wi only contains bits which are a single fixed function fi of pairs of X. Now we construct approximation sets Si for each of
the sets Wi as before. Notice that we have k∗ = 8 in remark 2 (we only lose entropy on the functions which are ANDs modulo
negation). Thus there exists a set S′ of size at most 8Cn+ 8n ≤ 8(C + 1)n such that H(Y |S′) ≥ (1− 8(C + 2)2−C−1)H(Y ).
Setting C,Cε = max(O(log( 1

ε )), 4) gives us what we want.

1.3 Greedy is optimal, and a combinatorial interpretation

Theorem 6. (Greedy is optimal up to factors in ε): Suppose there exists a set S = {S1, ..., Sm} such that H(Y |S) ≥
(1 − ε)H(Y ). Let S′ = {S′1, ..., S′k} be the set chosen as follows: at step i, find the index j such that H(Yj |YS′1 , ..., YS′i−1

) is

maximal, and add j to S′. Terminate when H(Y |S′) ≥ (1− ε)(1− ε′)H(Y ). Then we have k = O
(
m log

(
1
ε′

))
.

Proof. We claim that at step i, we have

max
j
H(Yj |YS′1 , ..., YS′i−1

) ≥
(1− ε)H(Y )−H(YS′1 , ..., YS′i−1

)

m
(27)

Suppose this did not hold. Then in particular we have

H(YS1 , ..., YSm) ≤ H(YS1 , ..., YSm |YS′1 , ..., YS′i−1
) +H(YS′1 , ..., YS′i−1

) (28)

≤
∑
i∈[m]

H(YSi |YS′1 , ..., YS′i−1
) +H(YS′1 , ..., YS′i−1

) (29)

< (1− ε)H(Y )−H(YS′1 , ..., YS′i−1
) +H(YS′1 , ..., YS′i−1

) (30)

= (1− ε)H(Y ) (31)

which gives a contradiction. Now we have

H(YS′1 , ..., YS′i) = H(YS′i |YS′1 , ..., YS′i−1
) +H(YS′1 , ..., YS′i−1

) (32)

≥ (1− ε)H(Y )

m
+

(
1− 1

m

)
H(YS′1 , ..., YS′i−1

) (33)

(34)

3



Solving f(i) = a
m + (1− 1

m )f(i− 1) and f(0) = 0 gives f(k) = a(1− (1− 1
m )k), so we have

H(YS′1 , ..., YS′k) ≥ (1− ε)(1− (1− 1

m
)k)H(Y ) (35)

picking k = O
(
m log

(
1
ε′

))
ensures that the LHS is ≥ (1− ε)(1− ε′)H(Y )

Corollary 7. For any ε > 0, there exists a set S of size O (C(ε)n) such that H(Y |S) ≥ (1− ε)H(Y ) iff for any ε > 0 there
exists a greedy set S′ of size O (C ′(ε)n) such that H(Y |S′) ≥ (1− ε)H(Y )

Definition 8. Let a weighted vertex graph S be a set of pairs (pi, Si), where pi ∈ [0, 1], Si ⊂ {0, 1}n. We view each pi as a
weight for the subset of vertices Si. At all times we have

∑
i pi = 1 and that {Si}i forms a partition of {0, 1}n.

Definition 9. Given a conditioning set Rj ⊂ {0, 1}n, where Rj := {x ∈ {0, 1}n|Yj(x) = 1}, we define the weighted vertex

graph S − Rj conditioned on Rj as follows: for each (pi, Si) ∈ S, let Si,0 = Si ∩ Rcj, pi,0 = pi
|Si,0|
|Si| and Si,1 = Si ∩ Ri,

pi,1 = pi
|Si,1|
|Si| . Now replace each (pi, Si) by the sets (pi,0, Si,0), (pi,1, Si,1) to form S −Rj.

Remark 10. Let S = Λ := {(1, {0, 1}n)}. Then we can view the distribution X|Yi1 , ..., Yik as being ”represented” by the
weighted vertex graph S − Ri1 − ... − Rik . Indeed, for each distribution X|Yi1 = yi1 , ..., Yik = yik , there exists an element
(pj , Sj) ∈ S such that pi = P (Yi1 = yi1 , ..., Yik = yik) and Sj = {x ∈ {0, 1}n|Yi1(x) = yi1 , ..., Yik(x) = yik}. We can draw a
sample from the distribution of X by picking a set Si with probability pi, and then drawing uniformally from Si.

Lemma 11. Let S = {(pi, Si)}i = Λ − Ri1 − ... − Rik . Then H(X|Yi1 , ..., Yik) =
∑
i pi log(|Si|) and H(Yik+1

|Yi1 , ..., Yik) =∑
i pi

[
|Si,0|
|Si| log

(
|Si,0|+|Si,1|
|Si,0|

)
+
|Si,1|
|Si| log

(
|Si,0|+|Si,1|
|Si,1|

)]
. In particular, the remaining entropy H(X|Yi1 , ..., Yik) is the weighted

average of the logarithm of the size of each group.

Proof.

H(X|Yi1 , ..., Yik) =
∑

yi1 ,...,yik

P (Yi1 = yi1 , ..., Yik = yik)× (36)

[∑
x

P (x|Yi1 = yi1 , ..., Yik = yik) log

(
1

P (x|Yi1 = yi1 , ..., Yik = yik)

)]
(37)

=
∑
i

pi [log(|Si|)] (38)

And

H(Yik+1
|Yi1 , ..., Yik) = H(X|Yi1 , ..., Yik)−H(X|Yi1 , ..., Yik+1

) (39)

=
∑
i

(pi,0 + pi,1) log(|Si,0|+ |Si,1|)−
∑
i

(pi,0) log(|Si,0|)−
∑
i

(pi,1) log(|Si,1|) (40)

=
∑
i

[
pi,0 log

(
|Si,0|+ |Si,1|
|Si,0|

)
+ pi,1 log

(
|Si,0|+ |Si,1|
|Si,1|

)]
(41)

=
∑
i

pi

[
|Si,0|
|Si|

log

(
|Si,0|+ |Si,1|
|Si,0|

)
+
|Si,1|
|Si|

log

(
|Si,0|+ |Si,1|
|Si,1|

)]
(42)

=
∑
i

pi

[
|Si ∩Rcik+1

|
|Si|

log

(
|Si ∩Rcik+1

|+ |Si ∩Rik+1
|

|Si ∩Rcik+1
|

)]
(43)

+
∑
i

pi

[
|Si ∩Rik+1

|
|Si|

log

(
|Si ∩Rcik+1

|+ |Si ∩Rik+1
|

|Si ∩Rik+1
|

)]
(44)

Remark 12. Suppose each Yi depends on at most b bits. Then each Ri is of the form {∗... ∗ i1 ∗ ... ∗ ii2 ∗ ... ∗ ... ∗ ib ∗ ...∗},
i.e. the set of all n bit strings where each ∗ varies over {0, 1}, and (i1, ..., ib) takes values in a set F ⊂ {0, 1}b. In particular,
if Yi is not constant, then 2n−b ≤ |Ri|, |Rci | ≤ 2n − 2n−b.

Moreover, we know from a previous lemma that we can assume all the Yi’s consist of the same function f on b bits of X.
In this particular case, the forms of the Ri’s are even simpler: for each i, j, there exists a function σi,j : {0, 1}n → {0, 1}n
which permutes at most b bit positions, such that x ∈ Ri iff σi,j(x) ∈ Rj.

4



Corollary 13. Suppose we have random variables Y1, ..., Yw with corresponding conditioning sets R1, ..., Rw, where each Yi
is a function of X. Then the condition that H(Yi1 , ..., Yik) ≥ (1− ε)H(Y1, ..., Yw) is equivalent to∑

i

pS
′

i log(|S′i|) ≤ εn+ (1− ε)
∑
i

pSi log(|Si|) (45)

where S = {(pSi , Si)}i = Λ−R1 − ...−Rw and S′ = {(pS′i , S′i)}i = Λ−Ri1 − ...−Rik .

Proof. Write Y := (Y1, ..., Yw), Ỹ := (Yi1 , ..., Yik). Then we have the following sequence of equivalent conditions

∑
i

pS
′

i log(|S′i|) ≤ εn+ (1− ε)
∑
i

pSi log(|Si|) (46)

H(X|Ỹ ) ≤ εH(X) + (1− ε)H(X|Y ) (lemma 11) (47)

H(X|Ỹ )−H(X|Y ) ≤ ε [H(X)−H(X|Y )] (48)

(H(X)−H(Ỹ ))− (H(X)−H(Y )) ≤ ε [H(X)− (H(X)−H(Y ))] (49)

H(Y )−H(Ỹ ) ≤ εH(Y ) (50)

H(Ỹ ) ≥ (1− ε)H(Y ) (51)

Remark 14. The previous corollary shows that we can think of Ỹ = (Yi1 , ..., Yik) as being a ”covering” of Y = (Y1, ..., Yw)
which achieves a score

∑
i p
S′

i log(|S′i|) (which we are trying to minimize). Likewise, Y achieves a score of
∑
i p
S
i log(|Si|).

If the score of Ỹ is close enough to the score of Y , then we know H(Ỹ ) ≥ (1− ε)H(Y ).

Task: show that greedy always gives an εH(Y ) approximation of H(Y ) (using corollary 13) with a C ′(ε)n sized covering, or
give a counter example. Take note of remark 12: we can assume that each bit Yi is a fixed function f of some b bits of X,
and so the sets {Ri} have a particularly simple form. My intuition is that we want to use the fact that the size of each Ri is
large, and only ”fixes” a finite number of coordinates. We then probably want to make some kind of ”we can always decrease
the entropy H(Y |Yi1 , ..., Yik) by a constant factor” argument, similar to the proof in theorem 6. We know by corollary 7 and
theorem 5 that this claim holds when b = 2. My intuition is that a proof for greedy using the vertex covering language will
not use the fact that b = 2, and so will hopefully generalize to b = O(1).

2 Converting bit sources locally

This is a more direct way of approaching the motivating problem in section 1.1: how does one locally convert an iid unbiased
bit source X into a source of n′ bits Y , where Y is statistically close to a collection of iid coin flips with bias say 1

4 , and n′

is close to the optimal n/H( 1
4 ) in expectation.

Lemma 15. There exists an algorithm E which takes in bH(p) + 1 (in expectation) unbiased bits at a time, and returns b
bits. Moreover, KL(D(E), Bern(b, p)) ≤ 1, where Bern(b, p) are b i.i.d. Bernoulli random variables with bias p, and D(E)
is the distribution of an output block of E.

Proof. Let qx = PX∼Bern(b,p)[X = x]. For each x ∈ {0, 1}b, let lx = d− log2 (qx)e. The lengths {lx}x satisfy the kraft
inequality, so there exists a prefix code with these lengths where each codeword cx of length lx maps to x via E(cx) = x. Let
px = 2−lx be the probability of drawing codeword cx. We have

KL(D(E), Bern(b, p)) =
∑
x

px log

(
px
qx

)
(52)

=
∑
x

px [log (px)− log (qx)] (53)

=
∑
x

px [dlog (qx)e − log (qx)] (54)

≤ 1 (55)

A similar calculation shows that E[codeword length] =
∑
x pxlx =

∑
x 2−d− log2(qx)edlog

(
1
qx

)
e ≤ H(q) + 1 = bH(p) + 1.

5



Remark 16. The +1 bound in the KL divergence might be overly pessimistic: this really depends on how tightly we can
partition subsets of {0, 1}n such that the subsets of the partition are close to (negative) powers of 2 in probability. It might
be worth exploring explicit examples to see how tight we can get this (I think looking at things this low-level could also lead to
bounds in statistical difference).

Remark 17. Another thing to try (instead of trying to make optimal symbol codes directly) is to consider a kind of truncated

geometric distribution, i.e. P [x = 0...01] ∝
(
3
4

)number of zeroes 1
4 when the number of zeroes is less than say O(log(n)),

otherwise x will simply be O(log(n)) zeroes. Then we can think of generating our sequence of biased coins by continually
drawing i.i.d. values for x and concatenating them together. I’m not really sure whether this has any advantages over the
previous approach, but it might allow us to partition the x’s in a way which is more easy to analyze/break into powers of two.

2.1 l2 entropy bound using fourier analysis

Here, we wanted to try and see whether specific construction would work as a candidate for converting an iid bit source X
into a bit source Y .

The construction is as follows: for each i ∈ [n′], randomly pick indices G(i, 1), G(i, 2), G(i, 3), G(i, 4), G(i, 5), G(i, 6) ∈ [n] and
then set Yi := (xG(i,1) +xG(i,2) +xG(i,3))(xG(i,4) +xG(i,5) +xG(i,6)). This gives the right expectation: Yi is 1 with probability
1
4 . The hope was because this has a kind of ”expander graph” like property, the bits would also be reasonably independent.
The strategy for determining whether this would work is to try and upper bound the l1 norm of Y and the target distribution
by the l2 norm. The l2 norm is easier to analyze with fourier analysis tricks. We were (unfortunately) able to show that this
analysis approach doesn’t work.

Let µ be the 1
4 biased distribution on m bits, and vG the distribution we construct from a graph G. To draw yi, we first

draw x ∼ {0, 1}n. We then let yi = (xG(i,1) + xG(i,2) + xG(i,3))(xG(i,4) + xG(i,5) + xG(i,6)). If we fix x and choose G(i, j)
uniformally at random, then each xG(i,j) are iid bernoulli random variables with mean equal to the mean number of 1’s in
the fixed x. We have

∑
y∈{0,1}m

(Pv(y)− Pµ(y))2 = 2mEy∼{0,1}m [(Pv(y)− Pµ(y))2] (56)

= 2m
∑
S⊂[m]

[(P̂v(S)− P̂µ(S))2] (57)

= 2m
∑
S⊂[m]

[(Ey∼{0,1}m [(−1)
∑

i∈S yiPv(y)]− Ey∼{0,1}m [(−1)
∑

i∈S yiPµ(y)])2] (58)

= 2m
∑
S⊂[m]

[(2−mEy∼v[(−1)
∑

i∈S yi ]− 2−mEy∼µ[(−1)
∑

i∈S yi ])2] (59)

= 2−m
∑
S⊂[m]

[(Ex∼{0,1}n [(−1)
∑

i∈S yi(x)]− Ey∼µ[(−1)
∑

i∈S yi ])2] (60)

Fix an S ⊂ [m]. We have that

Ey∼µ[(−1)
∑

i∈S yi ] =

(
1

2

)|S|
(61)

And

EG

[
(Ex∼{0,1}n [(−1)

∑
i∈S yi(x)]− Ey∼µ[(−1)

∑
i∈S yi ])2

]
= EG

[
Ex∼{0,1}n [(−1)

∑
i∈S yi(x)]2

]
− 2EG

[
Ex∼{0,1}n [(−1)

∑
i∈S yi(x)]

](1

2

)|S|
+

(
1

2

)2|S|

(62)

6



EGEx∼{0,1}n [(−1)
∑

i∈S yi(x)] = Ex∼{0,1}nEG[(−1)
∑

i∈S yi(x)] (63)

=

n∑
a=0

P [x has a 1’s]EG[(−1)
∑

i∈S yi(x)|x has a 1’s] (64)

=

n∑
a=0

P [x has a 1’s]EG[(−1)y1(x)|x has a 1’s]|S| (65)

= 2−n
n∑
a=0

(
n

a

)
τ
(a
n

)|S|
(66)

where τ(p) := 1− 18p2 + 72p3 − 120p4 + 96p5 − 32p6, or equivalently τ( 1
2 + d) = 1/2− 8d3 − 32d6.

Quick aside

Using E[x2] ≥ E[x]2, we get that

(62) ≥

[
2−n

n∑
a=0

(
n

a

)
τ
(a
n

)|S|
−
(

1

2

)|S|]2
(67)

(68)

So that

EG
∑

y∈{0,1}m
(Pv(y)− Pµ(y))2 ≥ 2−m

∑
S⊂[m]

[
2−n

n∑
a=0

(
n

a

)
τ
(a
n

)|S|
−
(

1

2

)|S|]2
(69)

= 2−m
m∑
k=0

(
m

k

)[
2−n

n∑
a=0

(
n

a

)
τ
(a
n

)k
−
(

1

2

)k]2
(70)

This is a lower bound on the l2 norm squared. If we assumed this bound were tight (the optimistic case), the upper bound
on the l1 norm we would get is

2m/2

2−m
m∑
k=0

(
m

k

)[
2−n

n∑
a=0

(
n

a

)
τ
(a
n

)k
−
(

1

2

)k]2 1
2

(71)

=

 m∑
k=0

(
m

k

)[
2−n

n∑
a=0

(
n

a

)
τ
(a
n

)k
−
(

1

2

)k]2 1
2

(72)

Here are some plots of this bound for different relations between n and m, which show that this bound diverges for the
parameter ranges we care about.

7



Figure 1: Plot of bound for m = n

Figure 2: Plot of bound for m = n/2

Figure 3: Plot of bound for m = n/10

8


